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a WAN-based live migration and a new network connec-
tion migration protocol to ensure that the VM migration 
and subsequent changes to the VM’s network address 
are transparent to end-users. We implement a prototype 
of VMShadow in a nested hypervisor and demonstrate 
its effectiveness for optimizing the performance of VM-
based desktops in the cloud. Our experiments on a private 
as well as the public EC2 cloud show that VMShadow is 
able to discriminate between latency-sensitive and insen-
sitive desktop VMs and judiciously moves only those that 
will benefit the most from the migration. For desktop VMs 
with video activity, VMShadow improves VNC’s refresh 
rate by 90% by migrating virtual desktop to the closer loca-
tion. Transcontinental remote desktop migrations only take 
about 4 min and our connection migration proxy imposes 
13 μs overhead per packet.

Keywords Distributed clouds · Virtual desktop · 
Placement algorithm

1 Introduction

Hosting online applications on cloud platforms has become 
a popular paradigm. Applications ranging from multi-
tier web applications, gaming and individual desktops are 
being hosted out of virtualized resources running in com-
mercial cloud platforms or in a private cloud run by enter-
prises. The wide range of applications supported have 
diverse needs in terms of computation, network bandwidth 
and latency. To accommodate this and to provide geo-
graphic diversity, cloud platforms have become more dis-
tributed in recent years. Many cloud providers now offer 
a choice of several locations for hosting a cloud applica-
tion. For instance, Amazon’s EC2 cloud provides a choice 
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of eleven global locations across four continents. Similarly, 
enterprise-owned private clouds are distributed across a 
few large data centers as well as many smaller branch office 
sites. Such distributed clouds enable application providers 
to choose the geographic region(s) best suited to the needs 
of the particular application.

A concurrent trend is the growing popularity of virtual 
desktops (VDs) where the desktop PC of a user is encapsu-
lated into a virtual machine (VM) and this VM is hosted on 
a remote server or the cloud; users then access their desktop 
applications and their data files via a remote desktop proto-
col such as VNC (and via thin clients). This trend—known 
as virtual desktop infrastructure (VDI)—is being adopted 
in the industry due to numerous benefits. First of all, vir-
tualizing desktops and hosting them on remote servers 
simplifies the IT manager’s tasks, such as applying secu-
rity patches, performing data backups. Second, it also ena-
bles better resource management and reduces costs, since 
multiple desktop VMs can be hosted on a high-end server, 
which may still be more cost-effective than running each 
desktop on a separate PC. At the same time, in addition to 
their use for business purposes in enterprise settings, desk-
top VMs that are hosted in the cloud are beginning to be 
offered for consumer use. Notably, major cloud providers 
such as Amazon [2] and Microsoft [3] are currently offer-
ing Windows virtual desktops that can be accessed from a 
wide ranges of end devices including tablets.

The confluence of these trends—the emergence of both 
distributed clouds and popularity of virtual desktops—cre-
ates both opportunities and challenges. Today a virtual 
desktop provider needs to manually choose the best data 
center location for each end-user’s virtual desktop. In the 
simplest case, each VD can be hosted at a cloud data center 
location that is nearest to its user (owner). However, such 
manual placement becomes increasingly challenging for 
several reasons. To start with, while this may be straight-
forward in cloud platforms that offer a choice of a few loca-
tions (e.g., with Amazon, one would host all VDs for US 
east coast users at the east coast data center), it becomes 
progressively more challenging as the number of loca-
tions continues to grow in highly distributed clouds that 
already offer a large number of locations. Additionally, 
different data center locations may have varying hosting 
capacities. Regional locations might have comparatively 
smaller capacities than the “global” locations; this implies 
that naïvely placing all VDs from a location at their near-
est regional site might not be practical due to resource 
constraints. More interestingly, not all VDs are sensitive 
to network latency. Therefore, users may not see signifi-
cant performance improvement when their VDs are placed 
at the closest location. Specifically VDs that run latency-
sensitive applications such as multi-player games or video 
playbacks will see disproportionately greater benefit from 

nearby placement compared to those that run simple desk-
top applications such as e-mail or a text editor. Further, 
VDs will see dynamic workloads—users may choose to run 
different applications at different times and this workload 
mix may change over time. In addition, users may them-
selves move locations, particularly those that access their 
VDs via mobile devices, or go from work to home. This 
set of challenges imply that a static and manual placement 
of VDs at the nearest cloud location may not always be 
enough or even feasible. We argue that the cloud platform 
should incorporate intelligence to automatically determine 
the best location for hosting each application, and transpar-
ently and seamlessly adjust such mappings over time with 
changing application needs.

Towards this end, we present VMShadow, a system to 
transparently and dynamically manage the location and 
performance of virtual desktops in distributed clouds. 
Our system automates the process of placing, monitor-
ing and migrating cloud-based virtual desktops across the 
available cloud sites based on the location of users and 
latency-sensitivity of the applications. VMShadow per-
forms black-box virtual desktop fingerprinting to assign 
different latency-sensitive scores based on the packet-
level statistics collected from hypervisor. It then employs 
either an ILP algorithm or a cost-aware greedy algorithm, 
depending on the problem scale, to pick new locations for 
latency-sensitive VMs that balance the cost-benefit trade-
offs. Both algorithms are able to make placement decisions 
while considering the existing virtual desktop locations. 
VMShadow executes the new VM placement plan using 
live migration across the WAN, optimized by techniques 
such as delta encoding and content-based redundancy elim-
ination  [4]. More specifically, to migrate a VM to a new 
location across the WAN, VMShadow first live migrates 
the disk and memory state of a VM using the optimized 
WAN live migration. In the scenario where the public IP 
address of the virtual desktop changes, VMShadow seeks 
to maintain existing TCP connections between the clients 
and server VMs using connection proxies. The connection 
proxies communicate the changes of IP address and port 
number and rewrite the network packet headers to ensure 
that the migration is transparent to applications. As a result, 
VMShadow allows a client to stay connected irrespective 
of whether the server or even the client moves, whether the 
client or server is behind a NAT, and whether network enti-
ties such as routers and NAT devices are cooperating.

Although VMShadow is designed to be a general 
platform, in this paper we employ it primarily to opti-
mize the performance of desktop clouds, as illustrated in 
Fig.  1. Desktop clouds offer an interesting use-case for 
VMShadow since desktops run a diverse set of applica-
tions, not all of which are latency-sensitive. We imple-
ment a prototype of VMShadow in a nested hypervisor, 
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i.e., Xen-Blanket  [5], and experimentally evaluate its effi-
cacy on a mix of latency-sensitive multimedia and latency-
insensitive VDs running on a Xen-based private cloud 
and Amazon’s EC2 public cloud. Our results show that 
VMShadow’s black-box fingerprinting algorithm is able 
to discriminate between latency-sensitive and insensitive 
virtual desktops and judiciously moves only those VDs 
that see the most benefit from migration, such as the ones 
with video activity. For example, VDs with video play-
back activity see up to 90% improvement in refresh rates 
due to VMShadow’s automatic location optimizations. We 
demonstrate the live migration of VDs across Amazon EC2 
data centers with trans-coastal VM migrations of Ubuntu 
desktops with 1.4 GB disk and 1 GB RAM take 4 min. 
We show that our connection migration proxy—based on 
dynamic rewriting of packet headers—imposes an over-
head of 13 !s per packet. Our results show the benefits and 
feasibility of VMShadow for optimizing the performance 
of multimedia VDs, and more generally, of a diverse mix of 
virtual machine workloads.

2  Background

An infrastructure-as-a-service (IaaS) cloud allows appli-
cation providers to rent servers and storage and to run any 
virtualized application on these resources. We assume that 
our IAAS cloud is highly distributed and offers a choice 
of many different geographic locations (“cloud sites”) for 
hosting each application. For example, in Amazon’s EC2, 
an application provider may choose to host their applica-
tion at any of their global locations such as Virginia and 
Singapore. We assume that future cloud platforms will be 
even more distributed and offer a much larger choice of 
locations (e.g. one in each major city or country). A distrib-
uted cloud is likely to comprise heterogeneous data cent-
ers—some locations or sites will be very large (“global”) 
data centers, while many other regional sites will comprise 
smaller data centers as depicted in Fig. 2. Such a heteroge-
neous distributed cloud maps well to how public clouds are 
likely to evolve—comprising of a few large global sites that 
offer economies of scale, while smaller regional sites offer 

greater choice in placing latency-sensitive applications. 
The model also maps well to distributed private clouds run 
by enterprises for their own internal needs—typical enter-
prise IT infrastructure consists of a few large backend data 
centers (to extract economies of scale by consolidating IT 
applications) and several smaller data centers at branch 
office locations (which host latency-sensitive applications 
locally).

We focus our attention on a single application class, 
namely cloud-based desktops (also referred to as desktop 
clouds that host a large number of VDs in data centers) that 
run on virtual machines (VMs) in the cloud data center. 
Each desktop VM represents a “desktop computer” for a 
particular user. Users connect to their desktop from a thin 
client using remote desktop protocols such as VNC or Win-
dows RDP. We treat the VMs as black boxes and assume 
that we do not have direct visibility into the applications 
running on the desktops; however, since all network traf-
fic to and from the VM must traverse the hypervisor or its 
driver domain, we assume that it is possible to analyze this 
network traffic and make inferences about ongoing activi-
ties on each desktop VM. Note that this black-box assump-
tion is necessary for public clouds where the VDs belong to 
third party users.

To provide the best possible performance to each desk-
top VM, the cloud platform should ideally host each VM 
at a site that is nearest to its user. Thus a naïve placement 
strategy is to determine the physical location of each user 
(e.g. New York, USA) and place that user’s VM at the 
geographically nearest cloud site. However, since nearby 
regional cloud cites may have a limited server capacity, 
it may not always be possible to accommodate all VDs at 
the regional site and some subset of these desktops may 
need to be moved or placed at alternate regional sites or at 
a backend global site. Judiciously determining which VDs 
see the greatest benefit from nearby placement is important 
when making these decisions.

Fortunately, not all desktop VMs are equal in terms 
of being latency-sensitive. As we show in Sect.  4, the 
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Fig. 1  Illustration of a distributed desktop cloud. Users can access 
their desktop VMs hosted in the regional cloud sites or global cloud 
sites through remote desktop protocol such as virtual network com-
puting (VNC)
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Fig. 2  A hypothetical distributed cloud. Circles denote global cloud 
location while squares denote regional sites
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performance of certain desktop applications is significantly 
impacted by the geographic distance between VD and its 
user. While for other applications, the location is not a 
major factor for good performance. In particular, network 
games require high interactivity or low latencies; video 
playback or graphics-rich applications require high refresh 
rates or high bandwidth while using remote desktop proto-
col. Such applications see the greatest benefits from nearby 
placement since this yields low round-trip time between 
the user and her VM or ensures higher bandwidth or less 
congested links. Thus identifying the subset of desktops 
that will benefit from closer placement to users is impor-
tant for good end-user experience. Further since users can 
run arbitrary applications on their desktops, we assume that 
VM behavior can change over time (in terms of its applica-
tion mix) and so can the locations of users (for instance, if 
a user moves to a different office location). The cloud plat-
form should also be able to adjust to these dynamics.

3  VMShadow design goals

Our goal is to design VMShadow, a system that opti-
mizes the performance of cloud-based VDs via judicious 
placement across different sites in a distributed cloud. 
VMShadow seeks to dynamically map latency-agnostic 
VMs to larger backend sites for economies of scale and 
latency-sensitive ones to local (or nearby regional) sites 
for a better user experience. To do so, our system must 
fingerprint individual VMs’ traffic to infer their degree of 
latency-sensitivity while respect the black-box assumption. 
Our system must then periodically determine which group 
of VMs need to be moved to new sites based on recent 
changes in their behaviors and then transparently migrate 
the disk and memory state of these desktops to new loca-
tions without any interruption. Typically VDs running 
latency-sensitive applications, such as games or multime-
dia applications (video playback), are the best candidates 
for such migration. Finally, our system should transparently 
address networking issues such as IP address changes when 
a VM is moved to a different data center location, even if 
the client or desktop is behind a network address transla-
tion (NAT) device.

3.1  VMShadow architecture

Figure 3 depicts the high-level architecture of VMShadow. 
Our system achieves the above goals by implementing 
four components: (1) a black-box VM fingerprinting tech-
nique that infers the latency-sensitivity of VMs by analyz-
ing packet-level network traffic, (2) an ILP and an efficient 
greedy algorithms that judiciously move highly latency-
sensitive VMs to their ideal locations by considering 

latency, migration cost as well as latency reduction. (3) An 
efficient WAN-based live migration of a VM’s disk and 
memory state using WAN-specific optimizations, and (4) 
a connection migration proxy that ensures seamless con-
nectivity of currently active TCP connections—despite IP 
address changes—in WAN live migration. We describe the 
design of each of these components in Sects. 4–6 and the 
implementation of VMShadow in Sect. 7.

4  Black-box VM latency fingerprinting

VMShadow uses a black-box fingerprinting algorithm to 
determine each virtual desktop’s latency-sensitivity score. 
This approach is based on the premise that certain applica-
tions perform well, or see significant performance improve-
ments, when located close to their users. We first describe 
our observations of distinct network characteristics of 
latency-sensitive and insensitive applications running 
inside virtual desktop.

4.1  Latency-sensitive applications

Consider desktop users that play games; clearly the 
nearer the VD is to the user, the smaller the network 
round-trip-time (RTT) between the desktop and the user’s 
thin client. This leads to better user-perceived perfor-
mance for such latency-sensitive gaming. Similarly, con-
sider users that watch video on their virtual desktops—
either for entertainment purposes from sites such as 
YouTube or Netflix, or for online education via Massive 
Online Open Courses (MOOCs) or corporate training. 
Although video playback is not latency-sensitive per se, it 
has a high refresh rate (when playing 24 frames/s video, 
for example) and also causes the remote desktop protocol 
to consume significant bandwidth. As the RTT between 
the thin client display and the remote VD increases, the 
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Fig. 3  VMShadow architecture. The central cloud manager performs 
latency-sensitivity fingerprinting for each desktop VM and employs a 
greedy algorithm that migrates highly latency-sensitive VMs to closer 
cloud sites at least cost. For each hypervisor, we implement a live 
migration technique that achieves WAN-specific optimizations. For 
each desktop VM, we use proxy to transparently migrate TCP con-
nection
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performance of video playback suffers (see Fig. 4). Many 
VNC players, for instance, perform pull-based screen 
refresh and each refresh request is sent only after the 
previous one completes. Hence, the RTT will determine 
the upper bound on the request rate. Thus if the RTT is 
100 ms (not unusual for trans-continental distances in the 
US), such a player is limited to no more than 10 refresh 
requests per second, which causes problems when video 
playback requires 20 or 30 frames/s. In this case, locat-
ing the VD closer to the end-user yields a lower RTT and 
potentially higher refresh rates and better performance. 
This is depicted in Fig. 4 which shows a CDF of the VNC 
refresh rate of a client in Massachusetts when the desk-
top VM is on a LAN, or at US-East and US-West sites 
of Amazon EC2. More specifically, in Fig.  4a, when 
watching YouTube, we observe about 82% of the frame 
requests of LAN local streaming are served in less than 
41.7 ms—the update frequency for 24 FPS video. How-
ever, in Fig. 4b, when a user is watching video on the vir-
tual desktop hosted at US-West about 70% VNC frames 
are updated after more than 125 ms, with the potential 
loss of video frames. Thus, proper placement of desktops 
with video applications significantly impacts user-per-
ceived performance; similar observations hold for other 
application classes such as network games or graphics-
rich applications.

4.2  Latency-insensitive applications

In contrast to the above, applications such as simple web 
browsing and word processing as shown in Table  1 are 
insensitive to latency. Although these are interactive 
applications, user-perceived performance is not impacted 
by larger RTT since they are within the human tolerance 
for interactivity (as may be seen by growing popularity of 
cloud-based office applications such as Google docs and 
Office 360).

Based on our observations of different latency require-
ments of VD applications, we conclude that different VDs 
will have different degrees of latency-sensitivity depend-
ing on the collection of applications they run. Next, we 
will describe VMShadow’s black-box latency fingerprint-
ing algorithm that recognizes this diversity.

4.3  Black-box fingerprinting algorithm

The goal of our black-box fingerprinting algorithm is to 
assign latency sensitive scores S to virtual desktops based 
on their network characteristics without explicitly look-
ing inside each VM. For a particular virtual desktop, the 
end user (via a thin client) can run arbitrary applications 
simultaneously. This indicates virtual desktops will show 
dynamic latency requirements and these requirements 
will be reflected in the network traffic. For a total of N 
virtual desktops, we are mainly interested in finding the 
relative latency scores for each one. We use the normal-
ized network traffic throughput h∗, the normalized remote 
desktop protocol throughput e∗, and the latency-sensi-
tive percentage of normal internet traffic f ∗ to infer the 
latency score. The rationale behind our choice of these 
three indicators is as follows. First, a “chatty” virtual 
desktop is more likely to be sensitive to the placement. 

Table 1  Statistics of VNC 
frame response time for latency-
insensitive applications

For both online text editing and web browsing, users see acceptable latencies [6]

LAN (second) US-WEST (second)
Avg Max Min Std Avg Max Min Std

Text editor 0.191 0.447 0.094 0.0705 0.288 0.605 0.149 0.121
Web browser 0.059 0.269 0.009 0.050 0.174 0.472 0.099 0.071

(a) Watching online video.

(b) Watching local video.

Fig. 4  CDF comparisons of VNC frame response times for latency-
sensitive applications. Users have a better experience with watching 
videos when the VNC server is closer
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Second, a virtual desktop that interacts with thin client 
frequently is more likely to benefit from closer place-
ment. Third, based on our observations, a virtual desktop 
that runs graphic-rich applications, e.g., videos, is more 
likely to benefit from placement optimization.

To calculate these values for ith desktop VM, we collect 
packet-level traffic traces for a time window of size Ti. The 
traces are collected by observing the incoming and outgo-
ing traffic of a VM from the driver domain of the hypervi-
sor (e.g., Xen’s dom0). We denote the total network traffic 
observed for ith VM as Hi and obtain the throughput hi and 
normalized throughput h∗

i
 in Eqs. 1 and  2.

Next, we identify the total amount of remote desktop traffic 
Ei using the default ports, e.g., port 5901 (server port for 
the VNC protocol ) or port 3389 (server port for the Win-
dows RDP protocol). Similarly, we can calculate the pro-
tocol throughput ei and normalized throughput e∗

i
 in Eqs. 3 

and  4.

Lastly, to calculate the latency-sensitive percentage of 
internet traffic for ith virtual desktop f ∗

i
, we first use our list 

of latency-sensitive server ports and addresses to identify 
the amount of latency-sensitive traffic Fi and then obtain f ∗

i
 

as in Eq. 5.

To obtain the list of latency-sensitive server ports and 
addresses, we assume that the administrator provides this 
initial information based on prior experience. Notably, 
“http://youtube.com” or other online video streaming sites 
would be included in the initial list. VMShadow then 
evolves this list by adding or removing information from 
the list using classification results. Currently,VMShadow 
uses K-nearest-neighbors (KNN) classifier to label each 
new TCP connection as latency-sensitive or not. When 

(1)hi =
Hi

Ti
,

(2)h∗
i
=

hi

ĥ
,

ĥ = max⟨h1, h2,… hN⟩

(3)ei =
Ei

Ti
,

(4)e∗
i
=

ei
ê
,

ê = max⟨e1, e2,… eN⟩

(5)f ∗
i
=

Fi

(Hi − Ei)

building up KNN model, we represent each TCP connec-
tion as d-dimension feature vector1! ∈ "d and classify the 
new connections as latency sensitive or not based on major-
ity vote of its K nearest neighbors. Here, we choose K to be 
3. To collect training data, we manually run various 
selected applications (that we know of their latency-sensi-
tivity) inside virtual desktops and collect the feature vector 
for each connection. If a new connection is labeled as 
latency-sensitive, VMShadow will then add the corre-
sponding server port and address to the maintained list. 
Otherwise, the information will be removed from the main-
tained list if exists. Finally, we calculate the desktop VM’s 
latency scores S in Eq. 6.

where W = ⟨wh,we,wf ⟩ represents the weights we assign to 
each normalized term. Currently, we use W = ⟨ 1

3
, 1
3
, 1
3
⟩.

Thus, VMShadow keeps track of each virtual desktop’s 
latency score for a time-window of length M, denoted as 
⟨S(t −M), S(t −M + 1),⋯ S(t)⟩ and uses the moving aver-
age 1

M

∑M

j=0
Si(t − j) to represent the rank of ith VD. VDs 

with consistently high rank become candidates for latency 
optimization—in cases where they are not already in the 
best possible data center location—as described next.

5  VMShadow algorithm

In this section, we explain VMShadow’s algorithm that 
enables virtual desktop deployments to “shadow”, i.e., 
follow their users through intelligent placement. Given 
a distributed cloud with K locations, placements of N 
active desktop VMs and their latency-sensitive ranks 
⟨S1, S2 … SN⟩, our shadowing algorithm employs the fol-
lowing steps periodically.

Step 1. Identify potential candidates to move. 
VMShadow determines which VMs are good candidates 
for migration to a different location—either relocated to a 
closer cloud location or evicted from a regional site with 
limited resource. We define a high threshold Sup and a cor-
responding low threshold Slo to identify VMs for either 
relocation or eviction. Note that we can obtain Sup and Slo 
by setting up two benchmark virtual desktops, one that 
runs latency-sensitive applications and the other runs that 
latency-insensitive applications, and measure their network 
traffic. In particular, for ith VM with a latency score of Si, 
if Si > Sup, it becomes a candidate for relocation; if Si < Slo, 
it is a candidate for eviction. As an example, a desktop VM 
with consistent video or gaming activities will become 

1 Example features include throughput, connection duration or inter-
packet latency.

(6)S = wh ∗ h∗ + we ∗ e∗ + wf ∗ f ∗,
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a candidate for optimization and those that have not seen 
such activities for long periods will become candidates for 
eviction.

Step 2. Determine new locations for each candidate. 
For each VM that is flagged as a candidate for relocation, 
VMShadow next identifies potential new cloud locations 
for that VM. To do so, it first determines the location of the 
user for that desktop VM (by performing IP geo-location 
of the VNC thin client’s IP address  [7]). It then identifies 
the k closest cloud sites by geographic distance and then 
computes the network distance (latency) of the user to each 
of these k sites. These sites are then rank-ordered by their 
network distance as potential locations to move the VM. 
Candidate VMs that are already resident at the “best” cloud 
site are removed from further consideration.

Step 3. Analyze VMs’ cost-benefit for placement deci-
sion. For each candidate VM for relocation, VMShadow 
performs a cost-benefit analysis of the possible move. The 
cost of a move to a new location is the overhead of copy-
ing the memory and disk state of the VM from one loca-
tion to another over the WAN. The benefit of such a move 
is the potential improvement in user-perceived performance 
(e.g. latency reduction). In general, the benefit of a move 
is magnified if the VM has a relatively small disk and 
memory footprint(cost) and a high latency-sensitive rank. 
Since regional/local cloud sites may have smaller capaci-
ties, VMShadow must perform the cost-benefit analysis to 
identify VMs that yield the most benefit at the least cost. 
Also VMShadow could evict low-ranked VMs to free up 
resources when necessary. We formulate the above problem 
as an integer linear program (ILP) optimization in Sect. 5.1. 
Since an ILP can have exponential running costs, we also 
devise an efficient greedy heuristic that incorporates cost-
benefit trade-off in Sect. 5.2.

Step 4. Trigger VMShadow migrations. The final step 
involves triggering migrations of the disk and memory state 
of VMs to their newly chosen locations. Our approach is 
built upon prior work CloudNet  [4] that provides an end-
to-end and optimized solution for live migrating virtual 
machines in the context of Wide Area Network. Our work 
extends CloudNet in two ways. First, we re-implement all 
optimizations inside a nested hypervisor, i.e. Xen-Blan-
ket [5]. This is an important extension because it provides 
us the flexibility to live migrate virtual machines between 
two nested hypervisors, eliminating the needs for hypervi-
sor privilege and cloud provider lock-in. In another words, 
VMShadow can seamlessly migrate virtual machines 
between different cloud platforms with geographically 
diverse data center locations. Second, we propose an alter-
native method to ensure TCP connections staying active 
after VM migrations. Unlike CloudNet  [4], our method 
does not require specialized hardware support. Our VM 
and connection migration techniques are detailed in Sect. 6.

5.1  VMShadow ILP placement algorithm

In this section, we describe our ILP algorithm that places 
above-threshold VMs—virtual desktops that have latency 
scores larger than Sup—to a better cloud location by con-
sidering the migration cost and latency reduction. Assume 
we have access to K data center locations, and a total of J 
server hosts. Our goal is to pick the ideal data center for all 
I VDs within the resource constraints of the hosts. Essen-
tially, we can translate the problem into selecting hosts with 
different network latencies to run the VDs.

Let ⟨Uj,Mj,Dj,Nj⟩ denote the available resource vector 
of Hostj representing CPU cores, memory, disk and net-
work bandwidth, respectively. In accounting the available 
resource vector for each host, we also count the account of 
resource used by below-threshold VMs (scores lower than 
Slo) that are marked for eviction. This enables us to prior-
itize the need of high latency-sensitive VMs in resource-
constrained regional sites by moving insensitive VMs to a 
larger/global site. Similarly, let ⟨ci,mi, di, ni⟩ denotes the 
resource vector of VMi.

Let Aij be the binary indicator such that:

Our goal is then to find an appropriate assignment to each 
Aij that minimizes the sum of normalized latency, migration 
cost and maximizes latency reduction while satisfying the 
constraints. Intuitively, the new VD placement should incur 
low migration cost and have large latency reduction. Simi-
larly, we use Ā to represent the current placement of VMs 
among J hosts. More specifically, let us denote the current 
placement of ith VM as pi, i.e., it is running in Hostpi, we 
then have Āipi

= 1 (and all other element in vector Āi as 0) 
for ith VM. We formulate the ILP problem as following:

subject to:

Aij =

{
1 if ith VM is on j th host
0 otherwise.

(7)

min
∑

i,j

AijLij

Li
+
∑

i,j

⋅

{
Aij = Āipi

, j ≠ pi
}(Ci

C
−

Bij

B

)
,

(8)
I∑

i=1

Aijui ≤ Uj, ∀j = 1… J,

(9)
I∑

i=1

Aijmi ≤ Mj, ∀j = 1… J,

(10)
I∑

i=1

Aijdi ≤ Dj, ∀j = 1… J,

(11)
I∑

i=1

Aijni ≤ Nj, ∀j = 1… J,
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where Li is the maximum latency of placing ith VM 
among all J hosts, i.e. Li = max⟨Li1,…Lij⟩. Specially, Lij 
denotes the expected network latency between a thin cli-
ent that connects to ith VDs and jth host. Ci and Bij denote 
the cost and benefit of migrating ith VM from its current 
host to a new one. We consider the cost of migrating ith 
VM to be the amount of data to be moved and the bene-
fit of migrating to host j be the latency reduction. Further, 
we use C and B to denote the maximum cost and benefit 
of migrating all I VM. That is, C = max⟨C1,C2 …CI⟩ and 
B = max{Bij|∀i = 1… I,∀j = 1… J}. Our objective func-
tion  7 not only considers the normalized latency associ-
ated with new placement decision, but also uses indicator 
function 1 to capture the relation between new placement 
decision and current virtual desktops to hosts mapping. We 
normalize each term to balance the impacts of metric on 
determining the placement decision. Constraints (8–11) 
ensure the placement decision of VMs satisfy the physical 
resource constraints of the hosts while constraints (12–13) 
together ensure each VM will only be placed in one host 
at every time point. While optimally, our ILP requires long 
time to compute placement decisions for large problem 
sizes. In the next section, we propose three different greedy 
heuristics that efficiently compute with new placement 
decisions.

5.2  VMShadow greedy heuristics

5.2.1  Rank-ordered greedy

In this approach, we consider all desktop VMs whose 
latency-sensitive rank exceeds a certain threshold Sh and 
consider them for relocation in rank order. Thus the highest 
ranked desktop VM is considered first for optimization. If 
the closest regional cloud site to this VM has insufficient 
resources, the greedy heuristic attempts to free up resources 
by evicting VMs that have been flagged for reclamation. If 
no VMs can be reclaimed or freed-up resources are insuffi-
cient to house the candidate VM, the greedy approach then 
considers the next closest cloud site as a possible home 
for the VM. This process continues until a new location 
is chosen (or it decides that the present location is still the 
best choice). The greedy heuristic then considers the next 
highest ranked desktop VM and so on. While rank-ordered 
greedy always moves the most needy (latency-sensitive) 
VM first, it is agnostic about the benefits of these poten-
tial moves—it will move a highly ranked VM from one 

(12)
L∑

j=1

Aij = 1, ∀i = 1… I,

(13)Aij ∈ {0, 1}, ∀i = 1… I, j = 1… J,

data center location to another even if the VM is relatively 
well-placed and the move yields a small, insignificant per-
formance improvement.

5.2.2  Cost-oblivious greedy

An alternate greedy approach is to consider candidates in 
the order of relative benefit rather than rank. This approach 
considers all VMs that are ranked above a threshold Sup and 
orders them by the relative benefit B of a move. We define 
the benefit metric as the weighted sum of the absolute 
decrease in latency and the percentage decrease. If l1 and 
l2 denote the latency from the current and the new (closest) 
data center to the end-user, respectively, then benefit B is 
computed as:

where w1 and w2 are weights, l1 − l2 denotes the absolute 
latency decrease seen by the VM due to a move and the 
second term is the percentage latency decrease. We do not 
consider the percentage decrease alone, since that may 
result in moving VMs with very low existing latency. For 
example, one VM may see a decrease from 100 to 60 ms, 
yielding a 40% reduction, while another may see a decrease 
from 2 to 1 ms, yielding a 50% reduction. Although the 
latter VM sees a greater percentage reduction, its actual 
performance improvement as perceived by the user will 
be small. Consequently, the benefit metric considers both 
the percentage reduction and the absolute decrease. The 
weights w1 and w2 control the contribution of each part—
we currently use w1 = 0.6 and w2 = 0.4 to favor the abso-
lute latency decrease since it has more direct impact on 
improving performance.

Once candidate VMs are ordered by their benefit, the 
cost-oblivious greedy heuristic considers the VM with the 
highest benefit first and considers moving it using a pro-
cess similar to rank-ordered greedy approach. The one dif-
ference is that if the VM cannot be relocated to the best 
location, this approach recomputes the benefit metric to the 
next best site and re-inserts the VM into the list of VMs 
in benefit order, and picks the VM with most benefit. Ties 
are broken by rank (if two candidates have the same benefit 
metric, the greedy considers the higher ranked VM first).

5.2.3  Cost-aware greedy

Cost-oblivious greedy only considers the benefit of 
potential moves but ignores the cost of such migrations. 
Since the disk and memory state of VMs will need to 
be migrated over a WAN, and this may involve copying 
large amounts (maybe gigabytes) of data, the costs can 
be substantial. Consequently, the final variant of greedy, 

(14)B = w1 ⋅ (l1 − l2) + w2 ⋅
(l1 − l2) × 100

l1
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known as cost-aware greedy heuristic, also considers the 
cost of moving a VM as:

where Sdisk and Smem denote the size of the disk and mem-
ory state of the virtual machine and parameter r captures 
the dirtying rate of the VM relative to the network band-
width.2 The dirty rate r could be either estimated by the 
network traffic to VD or monitored from hypervisor as the 
disk I/O write rates.

The cost-aware greedy approach then orders all candi-
date VMs using B

C
 (i.e. the benefit weighted by the cost). 

A candidate with a higher B
C
 offers a higher performance 

improvement benefit at a potentially lower migration cost. 
The VM with the highest B

C
 is considered first for possible 

movement to the closest cloud site. Like before, if this 
site has insufficient server resources, then VMs marked 
for reclamation are considered for eviction from this site 
to make room for the incoming VM. Note, Eq. 15 implic-
itly consider the potential cost of reclamation as one has 
to at least free up C amount of disk and memory spaces 
by evicting VMs. If no such reclamation candidates are 
available, the VM is considered for movement to the next 
closest site. The benefit metric to this next site is rec-
omputed and so is the B

C
 metric and the VM is reinserted 

in the list of candidate VM as per its new B
C
 metric. The 

greedy heuristic then moves on to the next VM in this 
ordered list and repeats. Ties are broken using the VMs’ 
rank.

Our VMShadow prototype employs this cost-aware 
greedy heuristic. It is straightforward to make the cost-
aware greedy implementation to behave like the cost-
oblivious or the rank-ordered greedy variants by setting 
the cost (for cost-oblivious) and benefit (for rank-ordered 
greedy) computation procedures to return unit values.

Avoiding oscillations: to avoid frequent moves or 
oscillatory behavior, we add “hysteresis” to the greedy 
algorithm—once a candidate VM has been moved to a 
new location, it is not considered for further optimiza-
tion for a certain hysteresis duration T. Similarly, any VM 
which drops in its latency-sensitivity rank is not evicted 
from a local site unless it exhibits consistently low rank 
for a hysteresis duration T ′. Moreover, the cost-benefit 

(15)C = (Sdisk + Smem) ⋅
1

1 − r
,

2 Live migration of a VM takes place in rounds, where the whole 
disk and memory state is migrated in the first round. Since the 
VM is executing in this period, it dirties a fraction of the disk and 
memory, and in the next round, we must move (Sdisk + Smem) ⋅ r, 
where r is the dirtied fraction. The next round will need an 
additional (Sdisk + Smem) ⋅ r

2. Thus we obtain an expression: 
(Sdisk + Smem) ⋅ (1 + r + r2 +⋯). This expression can be further 
refined using different disk and memory dirtying rates for the VM.

metrics avoid moving VMs that see small performance 
improvements or those that have a very high data copying 
cost during migration.

6  Transparent VM and connection migration

While VMShadow attempts to optimize the performance 
of latency-sensitive VMs by moving them closer to their 
users, it is critical that such moves be transparent to their 
users. The desktop VM should not incur downtime when 
being moved from one cloud site to another or encounter 
disruptions due to a change of the VM’s network address. 
VMShadow uses two key mechanisms to achieve this trans-
parency: live migration of desktop virtual machines over 
the WAN, and transparent migration of existing network 
connection to the VM’s new network (IP) address. We 
describe both mechanisms in this section.

6.1  Live migration over WAN

When VMShadow decides to move a VD from one cloud 
site to another, it triggers live migration of the VM over the 
WAN. While most virtualization platforms support live VM 
migration within a data center’s LAN  [8], there is limited 
support, if any, for a migration over the wide area. Hence, 
we build on the WAN-based VM migration approach that 
we proposed previously [4], but with suitable modifications 
for VMShadow’s needs.

The WAN-based VM migration that we use in 
VMShadow requires changes to the hypervisor to support 
efficient WAN migration. It is possible to implement these 
modifications of the hypervisor in private clouds where an 
enterprise has control over the hypervisor. Similar modifi-
cations are also possible in public clouds where the cloud 
provider itself offers a desktop cloud service to users. How-
ever, the desktop cloud service may also be implemented 
by a third party that leases servers and storage from a pub-
lic IaaS cloud provider, e.g., derivative clouds  [9, 10]. In 
such scenarios, the third party should not expect modifica-
tions to the hypervisor.

To support such scenarios also, we employ a nested 
hypervisor to implement VMShadow’s migration tech-
niques. A nested hypervisor runs a hypervisor h′ inside a 
normal virtual machine that itself runs on a typical hypervi-
sor h; actual user VMs run on top of hypervisor h′. Since 
the nested hypervisor is fully controlled by the desktop 
cloud provider (without requiring control of the underlying 
hypervisor), it enables hypervisor-level optimizations. Note 
that using a nested hypervisor trades flexibility for perfor-
mance due to the additional overhead of running a second 
hypervisor; however, Xen-Blanket [5], which we use in our 
prototype has shown that this overhead is minimal. As a 
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result, VMShadow can run over unmodified public cloud 
instances, such as Amazon EC2, and live migrate desktop 
VMs from one data center to another. In addition, VMShad-
ow’s WAN migration needs to transfer both the disk and 
memory state of the desktop virtual machine (unlike LAN-
based live migration which only moves the memory state 
since disks are assumed to be shared). VMShadow uses a 
four step migration algorithm, summarized in Fig. 5.

Step 1: VMShadow uses Linux’s DRBD module to cre-
ate an empty disk replica at the target data center location. 
It then begins to asynchronously transfer the disk state of 
the VM from the source data center to the target data center 
using DRBD’s asynchronous replication mode. The rate of 
data transfer can be controlled, if needed, using Linux’ traf-
fic control (tc) mechanisms to avoid any performance deg-
radation for the user during this phase. The application and 
VM continue to execute during this period and any writes 
to data that has already been sent must be re-sent.

Step 2: Once the disk state has been copied to the target 
data center, VMShadow switches the two disk replicas to 
DRBD’s synchronous replication mode. From this point, 
both disk replicas remain in lock step—any disk writes are 
broadcast to both and must finish at both replicas before the 
write returns from the disk driver. Note that disk writes will 
incur a performance degradation at this point since syn-
chronous replication to a remote WAN site increases disk 
write latency.

Step 3: Concurrent with Step 2, VMShadow also begins 
transferring the memory state of the VM from the source 
location to the target location. Like LAN-based live migra-
tion approaches, VMShadow uses a pre-copy approach 
which transfers memory pages in rounds [8]. The first round 
sequentially transfers each memory page from the source to 
the destination. As with the disk, VMShadow can control 
the rate of data transfer to mitigate any performance impact 
on front-end user tasks. Since the application is running, it 
continues to modify pages during this phase. Hence, each 
subsequent round transfers the only pages that have been 
modified since the previous round. Once the number of 

pages to transfer falls below a threshold, the VM is paused 
for a brief period and the remaining pages are transferred, 
after which the VM resumes execution at the destination.

Since substantial amounts of disk and memory data need 
to be transferred over the WANs, VMShadow borrows two 
optimizations from our prior work  [4] to speed up such 
transfers. First, block and page deltas [11] are used to trans-
fer only the portion of the disk block or memory page that 
was modified since it was previously sent. Second, caches 
are employed at both ends to implement content-based 
redundancy(CBR)  [4, 12]—duplicate blocks or pages that 
have been sent once need not be resent; instead a pointer 
to the cached data is sent and the data is picked up from 
the receiver cache. Both optimizations have been shown to 
reduce the amount of data sent over the WAN by 50% [4].

Step 4: Once the desktop VM moves to a new data 
center, it typically acquires a new IP address using DHCP. 
Changing the IP address of the network interface will 
cause all existing network connections to break and disrupt 
user activity. To eliminate such disruptions, VMShadow 
employs a connection migration protocol to “migrate” 
all current TCP connections transparently to the new IP 
address without any disruptions (TCP connections see 
a short pause during this transfer phase but resume nor-
mal activity once the migration completes). The connec-
tion migration is triggered after desktop VM is success-
fully migrated and then paused. Immediately afterwards, 
VMShadow updates the new mapping rules at proxies. 
Once the rules are updated, the migrated VM will be 
resumed with the new public IP address, and all subsequent 
packets will be rewritten. In summary, the actual traffic 
switching occurs after the connection migration protocol 
is successful. Once both the VM and connection migration 
phases complete, the desktop VM begins executing nor-
mally at the new cloud location. We describe VMShadow’s 
connection migration protocol next.

6.2  Connection migration protocol

Different cloud locations are typically assigned different 
blocks of IP addresses for efficient routing. As a result, 
when a VM moves from one cloud location to another, it is 
typically assigned an IP address from the new location’s IP 
block and will not retain its original IP address. This will 
cause TCP connections to be dropped and result in disrup-
tions to end users’ sessions. To prevent such disruptions, 
VMShadow employs a connection migration protocol that 
“migrates” these connections to the new IP address.

The issue of mobility, and having to change the IP 
address as a result, is a well known problem. There have 
been several proposals including HIP  [13], LISP  [14], 
ILNP [15] and Serval [16] that try to address this problem 
by separating the host identifier from the network address. 

Async. Copy

Spawn Xen-Blanket

Sync. Copy

Live Mem. Transfer

Time (Not to Scale)

Conn. Migration

Pause VM

Setup

Net.

Mem.

Disk.

Fig. 5  VMShadow migration phase using Xen-Blanket. Upon WAN 
live migration, a Xen-Blanket (nested hypervisor) VM is spawned 
first to receive disk and memory state from source WAN live migra-
tor. It is then followed by a live memory and disk transfer before 
briefly pausing the VM. The VM is successfully migrated to the new 
Xen-Blanket and ready to use after executing connection migration 
protocol
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With these approaches, the application connects at the TCP 
layer using the host identifier, while the packets are routed 
using the network address. When the user (i.e. host) moves, 
the network address changes, but the host identifier stays 
the same. As a result, TCP connections are not disrupted. 
Unfortunately, all these approaches require modifications to 
the application to take advantage of seamless mobility.

Instead, here we take a more pragmatic approach so that 
VMShadow works seamlessly with existing applications as 
they are. VMShadow makes use of a local proxy to imple-
ment a network connection migration protocol. VMShadow 
assumes that both end-points for every active connection 
on the migrated VM run this proxy (thus, both the thin cli-
ent and the desktop VM need to run the proxy, as do other 
servers elsewhere with active TCP connections to the desk-
top VM). However, in the cases where we do not have con-
trol over servers, for example YouTube streaming servers, 
we can set up in-network proxy servers that are closer to 
VDs. We envision the virtual desktop cloud providers will 
be in charge of maintaining these proxy servers. In sum-
mary, as long as the proxy is in the data path for the TCP 
connection between end points, it can mask any address 
changes by dynamically re-writing the IP headers of the 
packets.

To ensure transparency, the desktop VM uses two logi-
cal network interfaces: an internal interface with a fixed, 
private IP address and an external interface with the “real”, 
but potentially changing, IP address. All socket connec-
tions are bound to the internal interface as the local source 
address; as a result, active socket connections never directly 
see the changes to the external IP address. The proxy acts 
as a bridge between the internal and external network inter-
faces for all packets as shown in Fig. 6. Internally gener-
ated packets have a destination address that is the external 
IP address of the remote end host.

The proxy employs dynamic rewriting of packet 
headers (analogous to what is done in NAT devices) 
to bridge the two interfaces. For all outgoing pack-
ets, the default rewriting rule replaces the source IP of 
the internal interface with that of the external interface: 
(IPint, ∗) → (IPext, ∗). Thus when the external IP address 
changes after a WAN migration, the rewrite rule causes 

any subsequent packet to have the new external IP 
address rather than the old one. Incoming packets head-
ers are rewritten with the reverse rule, where the current 
external IP address is replaced with the fixed internal IP.

After an IP address change of a desktop VM, other 
end-points with connections to the desktop VM will 
begin seeing packets arriving from the new external IP 
address. However, connections on these machines expect 
packets from the old external IP address of the desktop 
VM. To ensure transparent operation, the local prox-
ies in other end-points intercept packets with the desk-
top VM and apply new rewrite rules beside the default 
one. For example, with new rewrite rules, incoming 
packets arriving from the desktop VM are rewritten as 
(IPnew, ∗) → (IPold, ∗) while outgoing packets to the desk-
top VM see rewrites to the destination IP address as 
(∗, IPold) → (∗, IPnew). These two rules ensures that out-
going packets go to the new address of the desktop VM 
(and thus are not lost), while incoming packets from the 
new IP address are rewritten with the old address before 
delivery to applications (that are still given the illusion 
of communicating with the old IP address). We illustrate 
various scenarios in Fig. 7.

To achieve this transparent migration, the proxies at 
both end points use control messages to signal each other 
about the change in IP address. This is done by having 
the desktop VM send a cryptographically signed mes-
sage to the corresponding proxy informing it of the IP 
address change. The cryptographic signing avoids mali-
cious third-parties from sending bogus IP address change 
messages and causing a denial of service. A typical IP 
address change control message will include the old IP 
address and request subsequent packets to be sent to the 
new address.

Note that the connection migration protocol is sym-
metric—it assumes an fixed internal interface and an 
external interface on all machines. Thus, the protocol can 
also handle IP address changes of the thin client or other 
machines that the desktop VM communicates with. Fur-
ther, the extra rewrite rules are generated on a per-socket 
basis rather than a per-machine basis to support dynamic 
connection setup. In particular, connections established 
before the IP address change requires rewriting based 
on both default and extra rules to maintain connectivity. 
Connections opened after the address change talk to the 
new address and only need default packet rewriting. How-
ever, for incoming packets, we use the port information 
of the connections to distinguish between ones that need 
a re-write (connections opened prior to the change) ver-
sus those that do not (those opened after the change). A 
general rewrite rule of an outgoing packet is of the form: 
(IPint, srcPort, IPold, dstPort) → (IPext, srcPort, IPnew, dstPort).

Pkts

Internal Logical NIC
(Fixed IP)

External Logical NIC
(Public IP)

Proxy
Apps

Pkts

Fig. 6  Illustration of proxy IP bridging. Inside each VM, the proxy 
bridges an internal logical NIC with the external one, masking the 
potential IP address changes from the higher-level applications
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6.2.1  Handling NAT devices

Our discussion thus far assumes that all end points have a 
publicly routable IP address. However, in many scenarios, 
one or both end-points may be behind NAT devices. We 
first consider the scenario where the thin client is behind 
a NAT (e.g., in a home) while the desktop VM resides in a 
public cloud and has a public IP address. In this case, when 
the desktop VM is moved from one location to another, it 
will no longer be able to communicate with the thin cli-
ent since the NAT will drop all packets from the new IP 
address of the desktop. In fact, the desktop VM will not 
even be able to notify the proxy on the thin client of its new 
IP address (since a “strict NAT” device drops all packets 
from any IP address it has not encountered thus far). To 
address this issue, we resort to NAT hole punching [17], a 
method that opens ports on the NAT to enable the desktop 
VM to communicate with the thin client.

VMShadow’s NAT hole punching is part of the con-
nection migration process. It works by notifying the client 
proxy of the IP address change from the old IP address of 
the desktop VM. In some scenarios, the desktop VM may 
be able to determine its new IP address at the destination 
before it migrates. This may be possible in enterprise pri-
vate clouds where an IP address is pre-allocated to the VM, 
or even in public clouds where one can request allocation 
of an elastic IP address independent of VM instances. In 
such cases, the proxy on the desktop VM notifies the proxy 
on the thin client of its future IP address and requests hole 

punching for this new IP address. In scenarios where the 
IP address cannot be determined a priori, we assume that 
the newly migrated VM will notify the driver domain of 
the nested hypervisor at the old location of its new address. 
The driver domain can use the old IP address to notify the 
proxy at the thin client of the IP address change and conse-
quently request hole punching.

Once the new IP address has been communicated to 
the client proxy, it proceeds to punch holes for each active 
socket port with the desktop VM. This is achieved by send-
ing a specially marked packet from each active source port 
to each active destination port but with the new IP address 
as the destination IP of these specially marked packets. 
These packets causes the NAT device to open up these 
ports for accepting packets from the new IP address of the 
desktop VM. NAT devices typically rewrite the source port 
number with a specially allocated port number and create a 
forwarding rule; packets arriving on this NAT port are for-
warded to the source port at the thin client device. Thus, 
a regular outgoing packet from the client to the desktop 
VM will see the following rewrites: the source proxy per-
forms the first rewrite (IPint, srcPort, IPold, dstPort)→(IPNAT, 
srcPort, IPnew, dstPort). The NAT device then further 
rewrites this packet as (IPNATExt

, natPort, IPnew, destPort).
When the first specially marked packet of this form is 

received at the desktop VM, it creates a mapping of the old 
natPort of the source to the new natPort. Then port numbers 
of any outgoing packets are rewritten by replacing the old 
natPort with the new natPort created by the hole punching. 

P( Int IP, SP, Pub IP, DP ) ( Ext IP, SP, Pub IP, DP ) ( Ext IP, SP, Pub IP, DP ) ( Ext IP, SP, Priv IP, DP ) WANP

Int IP  --> Exp IP
Iptable rules Iptable rules 

Pub IP  --> Priv IP

P( Int IP, SP, Old IP, DP ) ( Ext IP, SP, New IP, DP ) ( Ext IP, SP, New IP, DP ) ( Ext IP, SP, Priv IP, DP ) WANP

Int IP  --> Exp IP
Iptable rules 

Old IP  --> New IP

Iptable rules 
Pub IP  --> Priv IP
New IP  --> Priv IP

P( Int IP, SP, Old IP, DP ) 

( NAT IP, SP, New IP, DP ) 

( Pub IP, NP, New IP, DP ) ( Pub IP, OP, Priv IP, DP )WANP

NAT

(Pub IP, NP, New IP, DP)

Int IP  --> NAT IP
Iptable rules 

Old IP  --> New IP

Pub IP  --> Priv IP
Iptable rules 

NP --> OP

New IP --> Priv IP

(a) Both entities have public IP addresses.

(b) One entity’s public IP changes.

(c) A behind-NAT end point tries to communicate to an entity with new public IP address.

Fig. 7  Dynamic rule-based packet headers’ rewriting sequences. We 
use four-tuple, i.e., the source IP, source port, destination IP and des-
tination port, to represent a packet. Packets are matched based on the 

iptable rules of the proxy (default rule is in rule while new rules are 
in red). This ensures that high-level applications only see fixed inter-
nal IP without breaking the TCP connections. (Color figure online)
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Note that the specially marked hole punching packet is only 
processed by the proxy and then dropped and never deliv-
ered to the application. In our implementation, we simply 
assign a TCP sequence number of 1 and have an iptables 
rule for dropping potential RST packet. This extension ena-
bles the connection migration protocol to work even when 
one of the end-points is behind a NAT device. The proto-
col can be similarly extended with hole punching packets 
in both directions when both end-points are behind NAT 
devices. Note in this scenario, the entity that moved from 
one NAT to another will need to find out the IP address of 
the new NAT device first before proceeding hole punching. 
We omit the details here due to space constraints.

7  VMShadow implementation

We have implemented a prototype of VMShadow using 
Linux 3.1.2 and modified Xen-Blanket 4.1.1 [5]. Our pro-
totype is written in C and Python and consists of several 
interacting components as shown in Fig. 3. In the follow-
ing, we describe the design trade-offs, functionalities and 
implementation details of each component.

7.1  Fingerprinting engine

Our fingerprinting engine includes a distributed traffic 
collector in each host and a central fingerprinting engine 
running inside the cloud manager. Its main tasks include 
collecting network-level traffic information from each 
host and calculating the latency-sensitive score for each 
virtual desktop. We implement the traffic collector com-
ponent in Xen-Blanket’s driver domain (dom0). It uses 
python interfaces to the Linux netfilter library, more spe-
cifically libnetfilter_queue to copy packets queued by the 
kernel packet filter into user-space for analysis; it periodi-
cally samples the traffic and sends the statistics to the fin-
gerprinting engine running inside the cloud manager. The 
hypervisor-based fingerprinting system has negligible over-
head, and does not interfere with a virtual desktops’ nor-
mal performance. Specifically, the overhead can be broken 
down into copying packets, generating and sending statis-
tics to the fingerprinting engine. The dominating overhead 
comes from copying every network packet, but can be dra-
matically reduced by mapping kernel buffers to user space. 
This allows sharing buffers between kernel and user space 
applications, and essentially achieving zero copying over-
head. The caveat is the kernel needs to support zero-copy 
optimizations. For each active virtual desktop, cloud man-
ager then analyzes the normalized network traffic, normal-
ized protocol traffic and percentage of normal internet traf-
fics (as described in Sect. 4) based on the collected network 
traffics and the maintained list of latency-sensitive ports 

and server addresses. A relative latency-sensitive scores is 
assigned to each virtual desktop at the end of fingerprinting 
process.

7.2  WAN live migrator

Our WAN live migrator takes any running virtual desk-
top and migrates them to a different host as fast as possi-
ble without disrupting its functionalities. We implement 
the migrator on top of the nested hypervisor, i.e., the Xen 
related code in Xen-Blanket, by modifying live migration 
code in Xen. More specifically (refer to Fig. 5 for a picto-
rial detail), we include DRBD-based disk state migration to 
concurrently transfer virtual machine disk asynchronously. 
For transferring memory, we employing multiple optimi-
zations, i.e., zero page, memory page deltas and content-
based redundancy elimination [4] to optimize the transfer-
ring over WAN. To mitigate the live migration impact’s on 
the client traffic, we also implement the rate control mecha-
nisms to control the rate of state transfer over WAN links.

7.3  Connection proxy

Our connection proxy implements our connection migra-
tion protocol discussed in Sect.  6.2 as a python process. 
We design and implement the proxy in a way that is easy 
and flexible to run in any end points such as the VDs and 
the thin clients. The proxy listens on a well-known port, 
to receive (and send) cryptographically signed messages 
for announcing IP address changes. It uses the libnet-
filter_queue library to intercept outgoing and incom-
ing packets and rewrites the corresponding TCP headers as 
specified by the current rewrite rules in iptable. Packets 
are reinserted into the queue once the headers have been 
rewritten. We use the python scapy library to generate the 
appropriate packets for NAT hole punching. Our choice of 
implementing the proxy in user-space is based on the trade-
off of the implementation ease and overhead compared to a 
kernel implementation. In production use where efficiency 
has higher priority, one should implement the protocol in 
the kernel space to reduce the data copy overhead as well 
as iptable rules matching. We evaluate the overhead of 
our user-space proxy in Sect. 8.5.

7.4  Cloud manager

We use a centralized-architecture in implementing the 
cloud manager that runs periodically. It has interfaces to 
both fingerprinting engines and WAN live migrators that 
run distributed on each host. After each time period, our 
cloud manager feeds the latency-sensitive scores calculated 
by fingerprinting engine to the algorithm engine, to fig-
ure out the new virtual desktop placement. Our algorithm 
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engine implements both the ILP and cost-aware greedy 
algorithm. The migration manager then compares the new 
placement plan with the current placement to figure out a 
migration table that has three columns, i.e., the source host, 
the destination host and the target virtual desktop. Each row 
in the table represents a migration that needs to be actuated 
to improve the user-perceived performance. Our migration 
manager execute the specified migrations by contacting 
the WAN live migrator as well as the connection proxy on 
each source host. To avoid unnecessary performance degra-
dation, our cloud manager employs two intuitive methods 
that both aims at reducing the percentage of live migration 
bandwidth usage. The first one is to limit the number of 
concurrent live migrations between the same hosts and the 
second one is to control the total bandwidth usage of live 
migration.

8  Experimental evaluation

In this section, we first describe our experimental setups 
and then present our experimental results. In designing our 
experiments, we are interested in answering the following 
key questions.

1. How accurate is our black-box fingerprinting algorithm 
in distinguishing latency-sensitive desktop VMs from 
the rest?

2. What is our proposed cost-aware greedy algorithm 
compared to ILP in optimizing the location of desktop 
VMs?

3. What is the potential overheads of using live migra-
tion to move desktop VMs from one cloud location to 
another and the performance benefits to desktop VMs’ 
users?

4. How efficient is our connection migration proxy in 
seamlessly transferring the TCP connections?

5. Lastly, how does our prototype VMShadow work in 
resolving complex scenarios by detecting latency-sen-
sitive desktop VMs and improving their performances 
within resource constrains?

8.1  Experimental setup

The testbed for our evaluation consists of hybrid clouds 
with a private cloud in Massachusetts and Amazon EC2 
public clouds across different locations as shown in Fig. 8. 
The private cloud consists of 2.4 GHz quad-core Dell serv-
ers running Centos 6.2 and GNU/Linux kernel 2.6.32. On 
Amazon EC2, we use extra-large instances (m3.xlarge), 
each with 4 VCPUs, at two sites: US-West in Oregon and 
US-East in Virginia. All machines run modified Xen-Blan-
ket 4.1.1 and Linux 3.1.2 as Dom0.

Our desktop cloud consists of Ubuntu 12.04 LTS desk-
tops that are installed with vnc4server as the VNC server. 
Each desktop VM will have only one desktop session and 
accept connections from one thin client. We use VNC as 
the remote desktop protocol3 for the ease of instrumenting 
the according implementations. For laptop-based thin client 
machines, we use a modified open-source version of python 
VNC viewer to automate the experiment processes. For 
mobile phone, i.e., iPhone, thin client, we use VNC viewer 
acquired from App Store and manually perform user activi-
ties. Users that connect to the Ubuntu desktop will be able 
to run a variety of desktop applications, including OpenOf-
fice for editing documents, Google Docs for online editing, 
Chrome browser4 for web browsing and watching various 
online streaming, i.e., Youtube, Hulu and Netflix, Thunder-
bird email client and Movie Player for local video play-
back. Each desktop VM is assigned 1 GB memory, 1 VCPU 
and has a 8 GB disk of which 1.32 GB is used and runs 
inside Xen-Blanket dom0.

8.2  Accuracy of black-box VM fingerprinting

Black-box VM fingerprinting provides us the latency-sen-
sitive scores for each desktop VMs without peeking inside 
the user actives. In this experiment, we first show that VDs 
with different latency-sensitive requirement exhibit vastly 
different network-level characteristics and then we dem-
onstrate that our approach is able to assign correct relative 
latency-sensitivity scores to different VMs running various 
applications. We use Wireshark running on Dom0 of Xen-
Blanket to collect packet-level traces for each VMs during 
the experiment periods.

3 Our focus is not on comparing the performance differences of dif-
ferent remote desktop protocol.
4 We choose Chrome browser due to the fact that Netflix is not sup-
ported in the default Firefox browser.
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Fig. 8  Illustration of cloud sites setup in our experiments. Three 
cloud sides used for our experiments: a private cloud side in Massa-
chusetts, and EC2 sites in Virginia and Oregon
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8.2.1  Characterizing network activities of desktop VMs

We use VNC viewer from our laptop-based thin client to 
perform four distinct types of user actives, i.e., watching 
Youtube video, browsing graphic-rich websites, text editing 
using OpenOffices and watching video locally on the desk-
top VM. In each case, we sample the traffic generated by 
the VM in a 3-min measurement window after a warmup 
period and then repeat the process five times. We compute 
the average statistics across all five-runs and use them to 
characterize the network activities of each VMs.

Table  2 summarizes the different network activities of 
desktop VMs for these four activities. As expected, You-
Tube viewing consumes higher network bandwidth both 
from YouTube servers and for the remote desktop protocol 
display; video playback from a local file does not consume 
network bandwidth, but the data transfer for VNC is still 
high due to the video playback. Web browsing and text 
editing consume very little bandwidth. Note in our finger-
printing algorithm, both YouTube and graphic-rich brows-
ing will be labeled as latency-sensitive traffic based on the 
server ports and addresses.

8.2.2  Assigning latency-sensitive scores to desktop VMs

Based on the above observations, we next evaluate our fin-
gerprinting algorithm that favors and assign relative high 
scores to VMs based on their latency sensitivities. We use 
two models of iPhones, i.e. iPhone 6 and iPhone 6+, as 

our mobile thin clients and collect necessary network-level 
data using the same setup as in previous experiment. Our 
measurement data, together with our list of latency sensi-
tive ports and server addresses, are provided as input to our 
fingerprinting algorithm in Sect. 4 to calculate the scores.

Figure 9 compares the different latency scores assigned 
for desktop VMs that are running various applications. 
In general, our fingerprinting algorithm is able to assign 
“correct” relative scores to VMs running different appli-
cations. Specifically, both online streaming applications, 
disregarding the service providers, and local video play-
back are assigned with high latency scores. However, the 
score of watching local video using iPhone 6 is much lower 
than its counterparts. Recall that the relative latency score 
is calculated based on normalized throughput, protocol 
throughput and latency-sensitive throughput. Because local 
video does not generate internet traffic, it has a lower rela-
tive score compared to online streaming. In addition, with 
adaptive bitrate streaming, the amount of data transferred 
depends on screen size. This means iPhone 6 with smaller 
screen will have lower relative score than iPhone 6+. Since 
it heavily relies on the application bandwidths demand in 
calculating the scores, the results will be biased for thin cli-
ents with different screen size. To further improve the accu-
racy of latency scores, we could apply the algorithm based 
on the screen size of thin clients. Graphic-rich browsing, 
such as “imgur.com”, is considered more latency-sensitive 
compared to online editing using Google docs. Lastly, 
local editing, with a score of 0.001, is regarded to be not 

Table 2  Characterization of desktop VMs’ network activities

Virtual desktops running different applications exhibit different network characteristics, i.e., remote protocol traffic and Internet traffic

Uplink traffic Downlink traffic
Youtube Local video Browsing Text edit Youtube Local video Browsing Text edit

Non-VNC traffic (%) 37.7 0 0.67 0 53.7 0 0.62 0
Non-VNC bandwidth (KB/s) 1.85 0 0.0083 0 63.6 0 0.0059 0
Total bandwidth (KB/s) 74.6 54.5 17.94 17.14 65.8 1.54 0.454 0.86

Fig. 9  Comparison of latency sensitive scores for different desktop 
VMs. Online streaming applications have higher scores compared to 
the other types of applications for both mobile clients. For both cli-

ents, all but one latency score match our hypothesis. But this “out-of-
order” ranking can be remedied using threshold scores as discussed 
in Sect. 5
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sensitive to latency at all and is potential candidate for 
resource reclamation.

8.2.3  Result

Desktop VMs that run different applications exhibit differ-
ent level of network activities. Based on this observation, 
our fingerprinting algorithm is able to correctly favor and 
distinguish latency-sensitive desktop VMs, i.e. the ones 
that run online streaming or local video playback, from 
non-sensitive desktop VMs, i.e, local text editing.

8.3  Comparing greedy shadow algorithm to ILP

In this experiment, we study the performance differences 
between our cost-aware greedy algorithm and integer lin-
ear program (ILP) algorithm that is able to provide optimal 
results but with higher execution time. Both algorithms are 
implemented in VMShadow’s Cloud Manager. Specifically, 
we implemented the ILP algorithm using Python’s Convex 
optimization package CVXOPT that aims to minimize the 
latency reductions. We compare the greedy algorithm with 
the ILP approach in terms of scalability, i.e. execution time, 
and effectiveness, i.e. latency decrease percentage of desk-
top VMs.

To stress test both algorithms, we create synthetic 
scenarios with increasing numbers of desktop VMs and 
cloud locations and measure the execution time and 
effectiveness of both algorithms. In one case, we fix the 
number of desktop VMs to 2000 and vary the number of 
available cloud locations from 2 to 12. In another case, 
we fix the number of cloud locations to 40 and vary the 
number of desktop VMs in the cloud from 100 to 800. 
For each scenario, we run both version of algorithms ten 
times by assigning uniformly generated latency-sensitive 
scores to each VM and uniformly pick a set of data cent-
ers from a pool of forty locations. We use the average 

results across all runs to represent the performance and 
effectiveness for each scenario.

Figure  10 compares the execution time of these two 
algorithms in these two cases separately. As expected, the 
execution time of the ILP approach increases significantly 
with both increasing location choices (as in Fig.  10b) 
and increasing VMs (as in Fig. 10a); the execution time 
of the greedy approach, in comparison, remains flat for 
both scenarios. Figure  11 evaluates the effectiveness of 
the two algorithms in reducing the latency of desktop 
VMs via migrations. Our latency reduction achieved by 
our greedy approach is within 51–56% of the “optimal” 
ILP approach when our greedy algorithm has access to 
all forty data center locations. In the case of assigning 
all 2000 VMs to cloud locations, the effectiveness of our 
greedy approach is impacted either by the limited amount 
of cloud locations, (in the case of only two cloud loca-
tions), or the complexity growths. In general, the ILP 
approach is a better choice for smaller settings (where 
it remains tractable), while greedy is the only feasible 
choice for larger settings. Note also that our experiments 
stress test the algorithms by presenting a very large num-
ber of migration candidates in each run. In practice, the 
number of candidate VMs for migration is likely to be a 
small fraction of the total desktop VMs at any given time; 
consequently the greedy approach will better match the 
choices made by the ILP in these cases.

8.3.1  Results

VMShadow’s greedy algorithm is able to achieve around 
51–56% effectiveness with marginal execution time com-
pared to “optimal” ILP approach, even presented with a 
large number of migration candidates and potential cloud 
locations.

is set to 40. 2000.
(a) The number of cloud locations (b) The number of VMs is set to

Fig. 10  Execution time comparisons between ILP and greedy algo-
rithms. In general, greedy algorithm takes significant less time 
compared to ILP algorithm. For both algorithms, as the number of 
VMs to be assigned or the number of candidate cloud locations to be 
picked increase, the running time increases accordingly

is set to 40.
(a) The number of cloud locations (b) The number of VMs is set to

2000.

Fig. 11  Comparison of latency reduction percentage between ILP 
and greedy algorithms. When the number of VMs to be assigned 
increase, the reduction is bounded by the collections of data center 
locations. As the number of data center locations increases, ILP is 
able to utilize the data center locations to find optimal solutions for 
each VMs
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8.4  Live migration and virtual desktop performance

VMShadow’s WAN live migrator actuates the migration 
decisions generated by the greedy shadow algorithm on 
hybrid cloud platforms by leveraging nested virtualiza-
tion. In this experiments, we study the overheads of our 
WAN-based live migration approach, in terms of migra-
tion costs, as well as the user perceived performance 
benefits. We use the two Amazon sites in Oregon (US-
West) and Virginia (US-East) for this experiment. The 
thin client is located in the Massachusetts private cloud. 
We run two desktop VMs in US-West. The first desktop 
represents a user running a text editing application for the 
first 50 s and then watching a YouTube video, while the 
second desktop represents a user only performing word 
editing. We perform live migration of both VMs at t = 50 
s from Oregon data center to Virginia one, which is a 
site closer to the Massachusetts-based thin client, with 
the help of VMShadow’s WAN migration component. 
For each live migration, we measure the total amount of 
data transferred and the time taken for the live migration 

as well as the time intervals between every VNC frame 
request and update.

As shown in Table 3, the delta-based and CBR optimi-
zations used by VMShadow allow WAN migrations to be 
efficient; VMShadow migrates desktop VMs with 1 GB 
memory coast-to-coast in less than 165 s. It is useful to 
note that the pause time (i.e., the time when a user may per-
ceive any unresponsiveness) for the applications as a result 
of the migration is relatively small, between 2.5 and 2.8 s. 
The total migration time is determined by how much mem-
ory to transfer and how fast memory is dirtied. Therefore, 
it takes longer to migrate the virtual desktop that runs You-
Tube than Word editing. But for the pause time, it is deter-
mined by the amount of dirty memory to transfer in the last 
iteration. When watching YouTube video, data is being 
streamed and prefetched before the last iteration. Thus, the 
downtime of the YouTube virtual desktop is sightly shorter.

Figure 12 shows the response time before and after the 
migration for both desktop VMs. We define the response 
time to be the time interval between sending a refresh 
request and receiving a response. Therefore, the lower the 
response time, the higher the refresh rate. Note also that 
the VNC player only sends a refresh request after receiving 
a response to its previous request. Thus the response time 
for such players is upper bounded by the network round-
trip time. As shown in the Fig. 12a, initially the refresh rate 
is low since word editing does not require frequent refresh. 
The refresh rate increases when the user begins watch-
ing YouTube, but the refresh rate is bounded by approxi-
mately 100 ms RTT between Oregon and Massachusetts, 
which limits VNC to no more than 10 refreshes per second 
(which is not adequate for 20FPS Youtube video). Once 
the VM has migrated from US-West to US-East, the RTT 
from the thin client to the desktop VM drops significantly 
(and below the dotted line indicating the minimum refresh 
rate for good video playback), allowing VNC to refresh 

Table 3  Comparison of transcontinental WAN migration of desktop 
VMs

Desktop VMs are migrated from Amazon EC2’s Oregon data center 
to Virginia data center using VMShadow that is optimized with delta-
based and CBR techniques. We observe a slightly more memory and 
disk data transfer for desktop VM that runs more applications. The 
migration pause time is due to the last iteration of memory transfer-
ring and TCP connection migration

Word + YouTube Word

Mem (GB) 0.56 0.54
Disk (GB) 1.36 1.34
Migration time (s) 165 149
Pause time (s) 2.48 2.8

Live Migration Phase
Live Migration Phase

Word Editing

Watching YouTube

(a) Latency-sensitive desktop VM. (b) Latency-insensitive desktop VM.

Fig. 12  Comparison of WAN live migration’s impact on desktop 
VMs running various applications. After migration, latency-sensitive 
desktop VM that runs online streaming achieves higher VNC frame 
update frequency due to lower RTT, directly improving user experi-

ence. On the other hand, latency-insensitive desktop VM that runs 
text editing application does not see a obvious improvement after 
migration
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the screen at an adequate rate. Figure 12b depicts the per-
formance of the Word editing desktop before and after the 
live migration. As shown, word editing involves key- and 
mouse-clicks and do not require frequent refreshes due to 
the relatively slow user activities. Thus, the refresh rate 
is once every few hundred milliseconds; further a 100 ms 
delay between a key-press and a refresh is still tolerable 
by users for interactive word editing. Even after the migra-
tion completes, the lower RTT does not yield a direct ben-
efit since the slow refresh rate, which is adequate to cap-
ture screen activities, is the dominant contribution to the 
response time.

8.4.1  Results

Migrating a desktop VM trans-continentally takes about 4 
mins depending on the workload while incurring 2.5–2.8 
s pausing time. Further, not all desktop applications see 
benefits from migrating to a closer cloud site, demon-
strating our premise that not all desktop applications are 
latency-sensitive.

8.5  Connection migration proxy overhead

Our connection migration proxy handles the TCP con-
nection migration in the case of public IP address change 
caused by WAN live migration. In this experiment, we 
evaluate the overhead of running our proxy at each desktop 
VM, specifically the overheads of processing each packet 
and rewriting their headers. To conduct this micro-bench-
mark, we have the desktop VM connect to a server machine 
and establish an increasing number of TCP socket connec-
tions. The desktop VM then sends or receives 10,000 pack-
ets over each socket connection and record the overheads 
incurred by the proxy as we increase the number of con-
current socket connections from 8 to 64. For each measure-
ment data, We repeat this experiment for 10 times to gather 
all the measurement data for results in Table 4 and Fig. 13.

The proxy overhead includes (1) data copying overhead 
incurred by libnetfilter Queue in copying packets from ker-
nel space to user-space and copying back to re-insert pack-
ets, (2) matching a packet to rewrite rules, and (3) rewrit-
ing packet headers. Table 4 depicts the per-packet overhead 
incurred by the proxy across all runs. As shown in the table, 
our user-space proxy adds a 3.37 ms processing latency to 

each outgoing and incoming packet, and 13.2 μs packet 
header rewriting-related latency. This means that 98.5% 
of the additional latency is due to the overhead of copying 
packets between kernel and user space; the table shows a 
mean 3.36 ms overhead of data copying. This overhead can 
be eliminated by moving the proxy implementation into 
kernel space. Figure  13 depicts the total processing time 
and copying overheads as the number of connections var-
ies from 8 to 64. As expected, the per-packet copying over-
head is independent of the number of connections. So is the 
overhead of rewriting headers for a given packet. As the 
number of connections grows, the number of rewrite rules 
grow in proportion, so the overhead of matching a packet to 
a rule grows slightly, as shown by the slight increase in the 
total processing overhead; this total overhead grows from 
3.485 to 3.976 ms. Note that our implementation uses a 
naïve linear rule matching algorithm and this overhead can 
be reduced substantially using more efficient techniques 
such as those used in routers to match ACLs.

8.5.1  Result

The dominant overhead of our proxy is due to data copying 
between kernel and user-space, with relatively efficient per-
packet header rewrites and rule matching.

8.6  VMShadow case study

Lastly, we evaluate and show the work progress of 
VMShadow in fingerprinting and assigning latency-sen-
sitive scores, and using WAN live migrations in resolving 
complex scenarios for improving the VDs’ performance. 
The series of migration are depicted in Fig. 14.

In this experiment, we consider three different types 
of applications, i.e., local video, text editing and online 
streaming running inside four identical VMs. For experi-
mental purpose, we constrain US-East and US-West 

Table 4  Per-packet proxy overhead

We average the data copying and header rewriting

Total time Copy time Rewrite time

Average (ms) 3.375 3.36 0.0133
Std. Dev. 0.022 0.034 0.0042

Fig. 13  Proxy processing overhead of TPC packet. Proxy overhead 
comprises copying network data between kernel and user-space and 
manipulating packets, i.e., iptable rule matching and header rewriting. 
The left bar group demonstrates the dominating copying overhead 
that is relatively constant to the number of active TCP connections
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sites to both have a capacity of hosting 4 VMs each. Ini-
tially only the word editing VM is located at US-East, 
while the other three are located in US-West. At time 
T1, VM1 and VM2 with local video and online stream-
ing are ranked high as latency-sensitive and VMShadow 
triggers their migrations to closer Virginia cloud site. 
At time T2, two new desktop VMs, i.e., VM5 and VM6

, running video applications are requested and started in 
Oregon data center. Both of these VMs are also flagged 
as latency-sensitive and VM5 is assigned higher latency-
sensitive score. To accommodate both of these two VMs 
in the Virginia data center (currently only has capac-
ity for one more VM), VMShadow first migrates higher 
rank VM5 while at the same time reclaims resource by 
moving lower ranked VM4 running text editing from 
Virginia to Oregon. At time T3 after VM4 has been suc-
cessfully migrated, VM-Shadow then continues the pro-
cess of migrating VM6. At time T4, we repeat the event 
of requesting a new virtual desktop for the user to watch 
a video streamed from YouTube. This leads to another 
swap between the newly requested online streaming 
VM7 in US-West and the slightly lower ranked VM1 in 
US-East. Eventually at time T5, we end up having all the 
highly ranked desktop VMs running close to their end-
users on the east coast, with lower ranked VMs running 
in US-West.

Figure 15 depicts the VNC response time for the three 
desktop VMs running different applications before, during 
and after their migrations in the above scenario. As shown, 
the first two VMs have latency-sensitive video activities, 
and the VNC performance improves significantly after a 
migration to the US east coast (from 300 to 41.7 ms). The 
third VM has document editing activity, which does not 
suffer noticeably despite a reclamation and a migration to 
west coast, which is further away to its user.

8.6.1  Results

In this case study, we demonstrate VMShadow’s ability to 
discriminate between latency-sensitive and latency-insensi-
tive desktop VMs and to trigger appropriate WAN migra-
tions to improve VNC response time in an artificially con-
strained cloud environments.

9  Related work

The problem of placing VMs in data centers has been 
extensively studied, most often as optimization problems, 
e.g., energy consumption minimization [18–21], or perfor-
mance maximization [22–24]. However, much of the focus 
has been, and continues to be, on placing VMs within a sin-
gle data center. Approaches include devising heuristic algo-
rithms [25, 26] or even formulating placement as a multi-
resource bin packing problem  [27–29]. Others  [30, 31] 
have even proposed placement and migration approaches 
that minimize data transfer time within a data center.

Placement of VMs in a distributed cloud  [32, 33] is 
complicated by additional constraints such as the inter-data 
center communication cost  [34–38]. For example, Steiner 
et al. [38] demonstrate the challenges of distributing VMs 
in a distributed cloud using virtual desktop as an example 
application. There have been a few recent efforts aimed at 
addressing placement in the distributed cloud [23, 39, 40]. 
These approaches aim to optimize placement using approx-
imation algorithms that minimize costs and latency [39], or 
through greedy algorithms that minimize costs and migra-
tion time [40–42]. In this work, we dynamically place desk-
top VMs according to their latency-sensitivities. We seek 
to balance the performance benefit with the migration cost 
by taking multiple dimensions into account, including the 
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Fig. 14  Illustration of a series of migrations to improve the perfor-
mance of Desktop VMs. We consider a simplified scenario with two 
cloud locations, one is closer and the other is further to our thin cli-
ents in Massachusetts. VMShadow automatically identifies and prior-
itizes latency-sensitive desktop VMs, i.e., VDs that run local video 

and online streaming applications, and migrates them to the US-East 
cloud location. To accommodate latency-sensitive VMs in a resource-
constrained cloud location, VMShadow reclaims the resource by 
migrating non latency-sensitive VDs to further cloud



 T. Guo et al.

1 3

virtual desktop user behavior, traffic profiles, data center 
locations and resource availabilities.

The latency-sensitivity of an application is crucial in 
determining its placement. There has been prior work that 
evaluated the efficiency of thin-client computing over the 
WAN and showed that network latency is a dominating fac-
tor affecting performance [43, 44]. More recently,  [45, 46] 
propose per-user models that capture the usage profiles of 
users to determine placement of the front- and back-ends of 
a desktop cloud.

The ability to manipulate the VM locations agilely, 
either by cloning  [47, 48] or migrating, is the primitive 
that allows us to adapt to changing latency-sensitivity 
of VMs. Virtualization platforms provide mechanisms 

and implementations to achieve LAN live migration with 
minimal disruption  [8, 49]. Multiple efforts  [50–53] have 
also sought to improve efficiency by either minimizing the 
amount of data transferred [52, 54] or optimizing the num-
ber of times data was iteratively transferred [50].

Disruption-free WAN live migration  [4, 5, 55, 56] is 
challenging due to lower wide area bandwidths, larger 
latencies, and changing IP addresses. Moreover, different 
cloud locations can run different virtualization platforms. 
Xen-Blanket  [5] provides a thin layer on top of Xen to 
homogenize diverse cloud infrastructures. CloudNet  [4] 
proposed multiple optimization techniques to dramatically 
reduce the live migration downtime over the WAN. It also 
tried to solve the problem of changing IP addresses by 
advocating “network virtualization” that involved network 
routers.

Others [57] have suggested using Mobile IPv6 to reroute 
packets to the new destination. There have also been sev-
eral proposals  [13–16] that attempt to address the general 
problem of seamless handover of TCP connections across 
IP address changes. In general all these approaches require 
changes; either to the applications, the network, or both. 
In our work, we implement a prototype of VMShadow in 
Xen by reusing some ideas from CloudNet  [4] and Xen-
Blanket  [5] and use a light-weight connection migration 
proxy that rewrites packet headers to cope with IP address 
changes and also to penetrate NATs.

10  Conclusions and future work

In this paper, we presented VMShadow, a system that 
automatically optimizes the location and performance of 
VM-based desktops, with dynamic changing needs, run-
ning different types of applications. VMShadow performs 
black-box fingerprinting of a desktop VM’s network traffic 
to infer latency-sensitivity and employs a greedy heuristic 
based algorithm to move highly latency-sensitive desktop 
VMs to cloud sites that are closer to their end-users. We 
empirically showed that desktop VMs with multimedia 
applications are likely to see the greatest benefits from such 
location-based optimizations in the distributed cloud infra-
structure. VMShadow employs WAN-based live migration 
and a new network connection migration protocol to ensure 
that the desktop VM migration and subsequent changes 
to the VM’s network address are transparent to end-users. 
We implemented a prototype of VMShadow in a nested 
hypervisor and demonstrated its effectiveness for optimiz-
ing the performance of VM-based desktops in our Mas-
sachusetts-based private cloud and Amazon’s EC2 cloud. 
Our experiments showed the benefits of our approach for 
latency-sensitive desktops VMs, e.g., those that are running 
multimedia applications.

Live Migration Phase

US-East
US-West

1 that ran Internet Streaming application.

Live Migration Phase

US-East

US-West

2 that ran local video application.

Live Migration Phase

US-East
US-West

(a) Migration of VM

(b) Migration of VM

(c) Migration of VM3 that ran local word editor.

Fig. 15  Performance case study of migrating different latency-sensi-
tive VMs. Decisions are made to migrate VM1 and VM2 to US-East, 
to be closer to user. When US-East is resource-constrained, low-
ranked VM3’s resources are reclaimed by migrating it back to US-
West to free up resources for latency-sensitive VM2
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In future work, we plan to study the efficacy of using 
VMShadow for various virtual desktop applications and for 
other cloud applications beyond virtual desktops.
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