
Vol.:(0123456789)1 3

Multimedia Systems
DOI 10.1007/s00530-017-0536-y

REGULAR PAPER

Latency-aware virtual desktops optimization in distributed clouds
Tian Guo1 · Prashant Shenoy2 · K. K. Ramakrishnan3 · Vijay Gopalakrishnan4

Received: 14 March 2015 / Accepted: 19 January 2017
© Springer-Verlag Berlin Heidelberg 2017

a WAN-based live migration and a new network connec-
tion migration protocol to ensure that the VM migration
and subsequent changes to the VM’s network address
are transparent to end-users. We implement a prototype
of VMShadow in a nested hypervisor and demonstrate
its effectiveness for optimizing the performance of VM-
based desktops in the cloud. Our experiments on a private
as well as the public EC2 cloud show that VMShadow is
able to discriminate between latency-sensitive and insen-
sitive desktop VMs and judiciously moves only those that
will benefit the most from the migration. For desktop VMs
with video activity, VMShadow improves VNC’s refresh
rate by 90% by migrating virtual desktop to the closer loca-
tion. Transcontinental remote desktop migrations only take
about 4 min and our connection migration proxy imposes
13 μs overhead per packet.

Keywords Distributed clouds · Virtual desktop ·
Placement algorithm

1 Introduction

Hosting online applications on cloud platforms has become
a popular paradigm. Applications ranging from multi-
tier web applications, gaming and individual desktops are
being hosted out of virtualized resources running in com-
mercial cloud platforms or in a private cloud run by enter-
prises. The wide range of applications supported have
diverse needs in terms of computation, network bandwidth
and latency. To accommodate this and to provide geo-
graphic diversity, cloud platforms have become more dis-
tributed in recent years. Many cloud providers now offer
a choice of several locations for hosting a cloud applica-
tion. For instance, Amazon’s EC2 cloud provides a choice

Abstract Distributed clouds offer a choice of data
center locations for providers to host their applications.
In this paper, we consider distributed clouds that host vir-
tual desktops which are then accessed by users through
remote desktop protocols. Virtual desktops have different
levels of latency-sensitivity, primarily determined by the
actual applications running and affected by the end users’
locations. In the scenario of mobile users, even switching
between 3G and WiFi networks affects the latency-sensi-
tivity. We design VMShadow, a system to automatically
optimize the location and performance of latency-sensitive
VMs in the cloud. VMShadow performs black-box finger-
printing of a VM’s network traffic to infer the latency-sen-
sitivity and employs both ILP and greedy heuristic based
algorithms to move highly latency-sensitive VMs to cloud
sites that are closer to their end users. VMShadow employs

Communicated by R. Rejaie.

A preliminary version of this work appeared at the ACM MMSys
2014 Conference [1].

 Tian Guo
 tian@cs.wpi.edu
 Prashant Shenoy
 shenoy@cs.umass.edu
 K. K. Ramakrishnan
 kk@cs.ucr.edu
 Vijay Gopalakrishnan
 gvijay@research.att.com
1 Worcester Polytechnic Institute, Worcester, USA
2 Umass Amherst, Amherst, USA
3 UC Riverside, Riverside, USA
4 AT&T Labs, Bedminster, USA

 T. Guo et al.

1 3

of eleven global locations across four continents. Similarly,
enterprise-owned private clouds are distributed across a
few large data centers as well as many smaller branch office
sites. Such distributed clouds enable application providers
to choose the geographic region(s) best suited to the needs
of the particular application.

A concurrent trend is the growing popularity of virtual
desktops (VDs) where the desktop PC of a user is encapsu-
lated into a virtual machine (VM) and this VM is hosted on
a remote server or the cloud; users then access their desktop
applications and their data files via a remote desktop proto-
col such as VNC (and via thin clients). This trend—known
as virtual desktop infrastructure (VDI)—is being adopted
in the industry due to numerous benefits. First of all, vir-
tualizing desktops and hosting them on remote servers
simplifies the IT manager’s tasks, such as applying secu-
rity patches, performing data backups. Second, it also ena-
bles better resource management and reduces costs, since
multiple desktop VMs can be hosted on a high-end server,
which may still be more cost-effective than running each
desktop on a separate PC. At the same time, in addition to
their use for business purposes in enterprise settings, desk-
top VMs that are hosted in the cloud are beginning to be
offered for consumer use. Notably, major cloud providers
such as Amazon [2] and Microsoft [3] are currently offer-
ing Windows virtual desktops that can be accessed from a
wide ranges of end devices including tablets.

The confluence of these trends—the emergence of both
distributed clouds and popularity of virtual desktops—cre-
ates both opportunities and challenges. Today a virtual
desktop provider needs to manually choose the best data
center location for each end-user’s virtual desktop. In the
simplest case, each VD can be hosted at a cloud data center
location that is nearest to its user (owner). However, such
manual placement becomes increasingly challenging for
several reasons. To start with, while this may be straight-
forward in cloud platforms that offer a choice of a few loca-
tions (e.g., with Amazon, one would host all VDs for US
east coast users at the east coast data center), it becomes
progressively more challenging as the number of loca-
tions continues to grow in highly distributed clouds that
already offer a large number of locations. Additionally,
different data center locations may have varying hosting
capacities. Regional locations might have comparatively
smaller capacities than the “global” locations; this implies
that naïvely placing all VDs from a location at their near-
est regional site might not be practical due to resource
constraints. More interestingly, not all VDs are sensitive
to network latency. Therefore, users may not see signifi-
cant performance improvement when their VDs are placed
at the closest location. Specifically VDs that run latency-
sensitive applications such as multi-player games or video
playbacks will see disproportionately greater benefit from

nearby placement compared to those that run simple desk-
top applications such as e-mail or a text editor. Further,
VDs will see dynamic workloads—users may choose to run
different applications at different times and this workload
mix may change over time. In addition, users may them-
selves move locations, particularly those that access their
VDs via mobile devices, or go from work to home. This
set of challenges imply that a static and manual placement
of VDs at the nearest cloud location may not always be
enough or even feasible. We argue that the cloud platform
should incorporate intelligence to automatically determine
the best location for hosting each application, and transpar-
ently and seamlessly adjust such mappings over time with
changing application needs.

Towards this end, we present VMShadow, a system to
transparently and dynamically manage the location and
performance of virtual desktops in distributed clouds.
Our system automates the process of placing, monitor-
ing and migrating cloud-based virtual desktops across the
available cloud sites based on the location of users and
latency-sensitivity of the applications. VMShadow per-
forms black-box virtual desktop fingerprinting to assign
different latency-sensitive scores based on the packet-
level statistics collected from hypervisor. It then employs
either an ILP algorithm or a cost-aware greedy algorithm,
depending on the problem scale, to pick new locations for
latency-sensitive VMs that balance the cost-benefit trade-
offs. Both algorithms are able to make placement decisions
while considering the existing virtual desktop locations.
VMShadow executes the new VM placement plan using
live migration across the WAN, optimized by techniques
such as delta encoding and content-based redundancy elim-
ination [4]. More specifically, to migrate a VM to a new
location across the WAN, VMShadow first live migrates
the disk and memory state of a VM using the optimized
WAN live migration. In the scenario where the public IP
address of the virtual desktop changes, VMShadow seeks
to maintain existing TCP connections between the clients
and server VMs using connection proxies. The connection
proxies communicate the changes of IP address and port
number and rewrite the network packet headers to ensure
that the migration is transparent to applications. As a result,
VMShadow allows a client to stay connected irrespective
of whether the server or even the client moves, whether the
client or server is behind a NAT, and whether network enti-
ties such as routers and NAT devices are cooperating.

Although VMShadow is designed to be a general
platform, in this paper we employ it primarily to opti-
mize the performance of desktop clouds, as illustrated in
Fig. 1. Desktop clouds offer an interesting use-case for
VMShadow since desktops run a diverse set of applica-
tions, not all of which are latency-sensitive. We imple-
ment a prototype of VMShadow in a nested hypervisor,

Latency-aware virtual desktops optimization in distributed clouds

1 3

i.e., Xen-Blanket [5], and experimentally evaluate its effi-
cacy on a mix of latency-sensitive multimedia and latency-
insensitive VDs running on a Xen-based private cloud
and Amazon’s EC2 public cloud. Our results show that
VMShadow’s black-box fingerprinting algorithm is able
to discriminate between latency-sensitive and insensitive
virtual desktops and judiciously moves only those VDs
that see the most benefit from migration, such as the ones
with video activity. For example, VDs with video play-
back activity see up to 90% improvement in refresh rates
due to VMShadow’s automatic location optimizations. We
demonstrate the live migration of VDs across Amazon EC2
data centers with trans-coastal VM migrations of Ubuntu
desktops with 1.4 GB disk and 1 GB RAM take 4 min.
We show that our connection migration proxy—based on
dynamic rewriting of packet headers—imposes an over-
head of 13 !s per packet. Our results show the benefits and
feasibility of VMShadow for optimizing the performance
of multimedia VDs, and more generally, of a diverse mix of
virtual machine workloads.

2 Background

An infrastructure-as-a-service (IaaS) cloud allows appli-
cation providers to rent servers and storage and to run any
virtualized application on these resources. We assume that
our IAAS cloud is highly distributed and offers a choice
of many different geographic locations (“cloud sites”) for
hosting each application. For example, in Amazon’s EC2,
an application provider may choose to host their applica-
tion at any of their global locations such as Virginia and
Singapore. We assume that future cloud platforms will be
even more distributed and offer a much larger choice of
locations (e.g. one in each major city or country). A distrib-
uted cloud is likely to comprise heterogeneous data cent-
ers—some locations or sites will be very large (“global”)
data centers, while many other regional sites will comprise
smaller data centers as depicted in Fig. 2. Such a heteroge-
neous distributed cloud maps well to how public clouds are
likely to evolve—comprising of a few large global sites that
offer economies of scale, while smaller regional sites offer

greater choice in placing latency-sensitive applications.
The model also maps well to distributed private clouds run
by enterprises for their own internal needs—typical enter-
prise IT infrastructure consists of a few large backend data
centers (to extract economies of scale by consolidating IT
applications) and several smaller data centers at branch
office locations (which host latency-sensitive applications
locally).

We focus our attention on a single application class,
namely cloud-based desktops (also referred to as desktop
clouds that host a large number of VDs in data centers) that
run on virtual machines (VMs) in the cloud data center.
Each desktop VM represents a “desktop computer” for a
particular user. Users connect to their desktop from a thin
client using remote desktop protocols such as VNC or Win-
dows RDP. We treat the VMs as black boxes and assume
that we do not have direct visibility into the applications
running on the desktops; however, since all network traf-
fic to and from the VM must traverse the hypervisor or its
driver domain, we assume that it is possible to analyze this
network traffic and make inferences about ongoing activi-
ties on each desktop VM. Note that this black-box assump-
tion is necessary for public clouds where the VDs belong to
third party users.

To provide the best possible performance to each desk-
top VM, the cloud platform should ideally host each VM
at a site that is nearest to its user. Thus a naïve placement
strategy is to determine the physical location of each user
(e.g. New York, USA) and place that user’s VM at the
geographically nearest cloud site. However, since nearby
regional cloud cites may have a limited server capacity,
it may not always be possible to accommodate all VDs at
the regional site and some subset of these desktops may
need to be moved or placed at alternate regional sites or at
a backend global site. Judiciously determining which VDs
see the greatest benefit from nearby placement is important
when making these decisions.

Fortunately, not all desktop VMs are equal in terms
of being latency-sensitive. As we show in Sect. 4, the

Regional
Cloud Site

Desktop
VM

Cloud Site 1 Cloud Site 2

Remote Desktop Protocol

Thin
Client

Thin
Client

Internet

Desktop
VM

Fig. 1 Illustration of a distributed desktop cloud. Users can access
their desktop VMs hosted in the regional cloud sites or global cloud
sites through remote desktop protocol such as virtual network com-
puting (VNC)

Global Site Regional Site

Fig. 2 A hypothetical distributed cloud. Circles denote global cloud
location while squares denote regional sites

 T. Guo et al.

1 3

performance of certain desktop applications is significantly
impacted by the geographic distance between VD and its
user. While for other applications, the location is not a
major factor for good performance. In particular, network
games require high interactivity or low latencies; video
playback or graphics-rich applications require high refresh
rates or high bandwidth while using remote desktop proto-
col. Such applications see the greatest benefits from nearby
placement since this yields low round-trip time between
the user and her VM or ensures higher bandwidth or less
congested links. Thus identifying the subset of desktops
that will benefit from closer placement to users is impor-
tant for good end-user experience. Further since users can
run arbitrary applications on their desktops, we assume that
VM behavior can change over time (in terms of its applica-
tion mix) and so can the locations of users (for instance, if
a user moves to a different office location). The cloud plat-
form should also be able to adjust to these dynamics.

3 VMShadow design goals

Our goal is to design VMShadow, a system that opti-
mizes the performance of cloud-based VDs via judicious
placement across different sites in a distributed cloud.
VMShadow seeks to dynamically map latency-agnostic
VMs to larger backend sites for economies of scale and
latency-sensitive ones to local (or nearby regional) sites
for a better user experience. To do so, our system must
fingerprint individual VMs’ traffic to infer their degree of
latency-sensitivity while respect the black-box assumption.
Our system must then periodically determine which group
of VMs need to be moved to new sites based on recent
changes in their behaviors and then transparently migrate
the disk and memory state of these desktops to new loca-
tions without any interruption. Typically VDs running
latency-sensitive applications, such as games or multime-
dia applications (video playback), are the best candidates
for such migration. Finally, our system should transparently
address networking issues such as IP address changes when
a VM is moved to a different data center location, even if
the client or desktop is behind a network address transla-
tion (NAT) device.

3.1 VMShadow architecture

Figure 3 depicts the high-level architecture of VMShadow.
Our system achieves the above goals by implementing
four components: (1) a black-box VM fingerprinting tech-
nique that infers the latency-sensitivity of VMs by analyz-
ing packet-level network traffic, (2) an ILP and an efficient
greedy algorithms that judiciously move highly latency-
sensitive VMs to their ideal locations by considering

latency, migration cost as well as latency reduction. (3) An
efficient WAN-based live migration of a VM’s disk and
memory state using WAN-specific optimizations, and (4)
a connection migration proxy that ensures seamless con-
nectivity of currently active TCP connections—despite IP
address changes—in WAN live migration. We describe the
design of each of these components in Sects. 4–6 and the
implementation of VMShadow in Sect. 7.

4 Black-box VM latency fingerprinting

VMShadow uses a black-box fingerprinting algorithm to
determine each virtual desktop’s latency-sensitivity score.
This approach is based on the premise that certain applica-
tions perform well, or see significant performance improve-
ments, when located close to their users. We first describe
our observations of distinct network characteristics of
latency-sensitive and insensitive applications running
inside virtual desktop.

4.1 Latency-sensitive applications

Consider desktop users that play games; clearly the
nearer the VD is to the user, the smaller the network
round-trip-time (RTT) between the desktop and the user’s
thin client. This leads to better user-perceived perfor-
mance for such latency-sensitive gaming. Similarly, con-
sider users that watch video on their virtual desktops—
either for entertainment purposes from sites such as
YouTube or Netflix, or for online education via Massive
Online Open Courses (MOOCs) or corporate training.
Although video playback is not latency-sensitive per se, it
has a high refresh rate (when playing 24 frames/s video,
for example) and also causes the remote desktop protocol
to consume significant bandwidth. As the RTT between
the thin client display and the remote VD increases, the

OS
Proxy

Desktop
Apps

WAN Live Migrator
Nested

Hypervisor

OS
Proxy

Desktop
Apps

OS
Proxy

Desktop
Apps

WAN Live MigratorNested
Hypervisor

Live Migrating

Cloud Manager

Fingerprinting
Engine

Greedy Shadow
Algorithm

Fig. 3 VMShadow architecture. The central cloud manager performs
latency-sensitivity fingerprinting for each desktop VM and employs a
greedy algorithm that migrates highly latency-sensitive VMs to closer
cloud sites at least cost. For each hypervisor, we implement a live
migration technique that achieves WAN-specific optimizations. For
each desktop VM, we use proxy to transparently migrate TCP con-
nection

Latency-aware virtual desktops optimization in distributed clouds

1 3

performance of video playback suffers (see Fig. 4). Many
VNC players, for instance, perform pull-based screen
refresh and each refresh request is sent only after the
previous one completes. Hence, the RTT will determine
the upper bound on the request rate. Thus if the RTT is
100 ms (not unusual for trans-continental distances in the
US), such a player is limited to no more than 10 refresh
requests per second, which causes problems when video
playback requires 20 or 30 frames/s. In this case, locat-
ing the VD closer to the end-user yields a lower RTT and
potentially higher refresh rates and better performance.
This is depicted in Fig. 4 which shows a CDF of the VNC
refresh rate of a client in Massachusetts when the desk-
top VM is on a LAN, or at US-East and US-West sites
of Amazon EC2. More specifically, in Fig. 4a, when
watching YouTube, we observe about 82% of the frame
requests of LAN local streaming are served in less than
41.7 ms—the update frequency for 24 FPS video. How-
ever, in Fig. 4b, when a user is watching video on the vir-
tual desktop hosted at US-West about 70% VNC frames
are updated after more than 125 ms, with the potential
loss of video frames. Thus, proper placement of desktops
with video applications significantly impacts user-per-
ceived performance; similar observations hold for other
application classes such as network games or graphics-
rich applications.

4.2 Latency-insensitive applications

In contrast to the above, applications such as simple web
browsing and word processing as shown in Table 1 are
insensitive to latency. Although these are interactive
applications, user-perceived performance is not impacted
by larger RTT since they are within the human tolerance
for interactivity (as may be seen by growing popularity of
cloud-based office applications such as Google docs and
Office 360).

Based on our observations of different latency require-
ments of VD applications, we conclude that different VDs
will have different degrees of latency-sensitivity depend-
ing on the collection of applications they run. Next, we
will describe VMShadow’s black-box latency fingerprint-
ing algorithm that recognizes this diversity.

4.3 Black-box fingerprinting algorithm

The goal of our black-box fingerprinting algorithm is to
assign latency sensitive scores S to virtual desktops based
on their network characteristics without explicitly look-
ing inside each VM. For a particular virtual desktop, the
end user (via a thin client) can run arbitrary applications
simultaneously. This indicates virtual desktops will show
dynamic latency requirements and these requirements
will be reflected in the network traffic. For a total of N
virtual desktops, we are mainly interested in finding the
relative latency scores for each one. We use the normal-
ized network traffic throughput h∗, the normalized remote
desktop protocol throughput e∗, and the latency-sensi-
tive percentage of normal internet traffic f ∗ to infer the
latency score. The rationale behind our choice of these
three indicators is as follows. First, a “chatty” virtual
desktop is more likely to be sensitive to the placement.

Table 1 Statistics of VNC
frame response time for latency-
insensitive applications

For both online text editing and web browsing, users see acceptable latencies [6]

LAN (second) US-WEST (second)
Avg Max Min Std Avg Max Min Std

Text editor 0.191 0.447 0.094 0.0705 0.288 0.605 0.149 0.121
Web browser 0.059 0.269 0.009 0.050 0.174 0.472 0.099 0.071

(a) Watching online video.

(b) Watching local video.

Fig. 4 CDF comparisons of VNC frame response times for latency-
sensitive applications. Users have a better experience with watching
videos when the VNC server is closer

 T. Guo et al.

1 3

Second, a virtual desktop that interacts with thin client
frequently is more likely to benefit from closer place-
ment. Third, based on our observations, a virtual desktop
that runs graphic-rich applications, e.g., videos, is more
likely to benefit from placement optimization.

To calculate these values for ith desktop VM, we collect
packet-level traffic traces for a time window of size Ti. The
traces are collected by observing the incoming and outgo-
ing traffic of a VM from the driver domain of the hypervi-
sor (e.g., Xen’s dom0). We denote the total network traffic
observed for ith VM as Hi and obtain the throughput hi and
normalized throughput h∗

i
 in Eqs. 1 and 2.

Next, we identify the total amount of remote desktop traffic
Ei using the default ports, e.g., port 5901 (server port for
the VNC protocol) or port 3389 (server port for the Win-
dows RDP protocol). Similarly, we can calculate the pro-
tocol throughput ei and normalized throughput e∗

i
 in Eqs. 3

and 4.

Lastly, to calculate the latency-sensitive percentage of
internet traffic for ith virtual desktop f ∗

i
, we first use our list

of latency-sensitive server ports and addresses to identify
the amount of latency-sensitive traffic Fi and then obtain f ∗

i

as in Eq. 5.

To obtain the list of latency-sensitive server ports and
addresses, we assume that the administrator provides this
initial information based on prior experience. Notably,
“http://youtube.com” or other online video streaming sites
would be included in the initial list. VMShadow then
evolves this list by adding or removing information from
the list using classification results. Currently,VMShadow
uses K-nearest-neighbors (KNN) classifier to label each
new TCP connection as latency-sensitive or not. When

(1)hi =
Hi

Ti
,

(2)h∗
i
=

hi

ĥ
,

ĥ = max⟨h1, h2,… hN⟩

(3)ei =
Ei

Ti
,

(4)e∗
i
=

ei
ê
,

ê = max⟨e1, e2,… eN⟩

(5)f ∗
i
=

Fi

(Hi − Ei)

building up KNN model, we represent each TCP connec-
tion as d-dimension feature vector1! ∈ "d and classify the
new connections as latency sensitive or not based on major-
ity vote of its K nearest neighbors. Here, we choose K to be
3. To collect training data, we manually run various
selected applications (that we know of their latency-sensi-
tivity) inside virtual desktops and collect the feature vector
for each connection. If a new connection is labeled as
latency-sensitive, VMShadow will then add the corre-
sponding server port and address to the maintained list.
Otherwise, the information will be removed from the main-
tained list if exists. Finally, we calculate the desktop VM’s
latency scores S in Eq. 6.

where W = ⟨wh,we,wf ⟩ represents the weights we assign to
each normalized term. Currently, we use W = ⟨ 1

3
, 1
3
, 1
3
⟩.

Thus, VMShadow keeps track of each virtual desktop’s
latency score for a time-window of length M, denoted as
⟨S(t −M), S(t −M + 1),⋯ S(t)⟩ and uses the moving aver-
age 1

M

∑M

j=0
Si(t − j) to represent the rank of ith VD. VDs

with consistently high rank become candidates for latency
optimization—in cases where they are not already in the
best possible data center location—as described next.

5 VMShadow algorithm

In this section, we explain VMShadow’s algorithm that
enables virtual desktop deployments to “shadow”, i.e.,
follow their users through intelligent placement. Given
a distributed cloud with K locations, placements of N
active desktop VMs and their latency-sensitive ranks
⟨S1, S2 … SN⟩, our shadowing algorithm employs the fol-
lowing steps periodically.

Step 1. Identify potential candidates to move.
VMShadow determines which VMs are good candidates
for migration to a different location—either relocated to a
closer cloud location or evicted from a regional site with
limited resource. We define a high threshold Sup and a cor-
responding low threshold Slo to identify VMs for either
relocation or eviction. Note that we can obtain Sup and Slo
by setting up two benchmark virtual desktops, one that
runs latency-sensitive applications and the other runs that
latency-insensitive applications, and measure their network
traffic. In particular, for ith VM with a latency score of Si,
if Si > Sup, it becomes a candidate for relocation; if Si < Slo,
it is a candidate for eviction. As an example, a desktop VM
with consistent video or gaming activities will become

1 Example features include throughput, connection duration or inter-
packet latency.

(6)S = wh ∗ h∗ + we ∗ e∗ + wf ∗ f ∗,

Latency-aware virtual desktops optimization in distributed clouds

1 3

a candidate for optimization and those that have not seen
such activities for long periods will become candidates for
eviction.

Step 2. Determine new locations for each candidate.
For each VM that is flagged as a candidate for relocation,
VMShadow next identifies potential new cloud locations
for that VM. To do so, it first determines the location of the
user for that desktop VM (by performing IP geo-location
of the VNC thin client’s IP address [7]). It then identifies
the k closest cloud sites by geographic distance and then
computes the network distance (latency) of the user to each
of these k sites. These sites are then rank-ordered by their
network distance as potential locations to move the VM.
Candidate VMs that are already resident at the “best” cloud
site are removed from further consideration.

Step 3. Analyze VMs’ cost-benefit for placement deci-
sion. For each candidate VM for relocation, VMShadow
performs a cost-benefit analysis of the possible move. The
cost of a move to a new location is the overhead of copy-
ing the memory and disk state of the VM from one loca-
tion to another over the WAN. The benefit of such a move
is the potential improvement in user-perceived performance
(e.g. latency reduction). In general, the benefit of a move
is magnified if the VM has a relatively small disk and
memory footprint(cost) and a high latency-sensitive rank.
Since regional/local cloud sites may have smaller capaci-
ties, VMShadow must perform the cost-benefit analysis to
identify VMs that yield the most benefit at the least cost.
Also VMShadow could evict low-ranked VMs to free up
resources when necessary. We formulate the above problem
as an integer linear program (ILP) optimization in Sect. 5.1.
Since an ILP can have exponential running costs, we also
devise an efficient greedy heuristic that incorporates cost-
benefit trade-off in Sect. 5.2.

Step 4. Trigger VMShadow migrations. The final step
involves triggering migrations of the disk and memory state
of VMs to their newly chosen locations. Our approach is
built upon prior work CloudNet [4] that provides an end-
to-end and optimized solution for live migrating virtual
machines in the context of Wide Area Network. Our work
extends CloudNet in two ways. First, we re-implement all
optimizations inside a nested hypervisor, i.e. Xen-Blan-
ket [5]. This is an important extension because it provides
us the flexibility to live migrate virtual machines between
two nested hypervisors, eliminating the needs for hypervi-
sor privilege and cloud provider lock-in. In another words,
VMShadow can seamlessly migrate virtual machines
between different cloud platforms with geographically
diverse data center locations. Second, we propose an alter-
native method to ensure TCP connections staying active
after VM migrations. Unlike CloudNet [4], our method
does not require specialized hardware support. Our VM
and connection migration techniques are detailed in Sect. 6.

5.1 VMShadow ILP placement algorithm

In this section, we describe our ILP algorithm that places
above-threshold VMs—virtual desktops that have latency
scores larger than Sup—to a better cloud location by con-
sidering the migration cost and latency reduction. Assume
we have access to K data center locations, and a total of J
server hosts. Our goal is to pick the ideal data center for all
I VDs within the resource constraints of the hosts. Essen-
tially, we can translate the problem into selecting hosts with
different network latencies to run the VDs.

Let ⟨Uj,Mj,Dj,Nj⟩ denote the available resource vector
of Hostj representing CPU cores, memory, disk and net-
work bandwidth, respectively. In accounting the available
resource vector for each host, we also count the account of
resource used by below-threshold VMs (scores lower than
Slo) that are marked for eviction. This enables us to prior-
itize the need of high latency-sensitive VMs in resource-
constrained regional sites by moving insensitive VMs to a
larger/global site. Similarly, let ⟨ci,mi, di, ni⟩ denotes the
resource vector of VMi.

Let Aij be the binary indicator such that:

Our goal is then to find an appropriate assignment to each
Aij that minimizes the sum of normalized latency, migration
cost and maximizes latency reduction while satisfying the
constraints. Intuitively, the new VD placement should incur
low migration cost and have large latency reduction. Simi-
larly, we use Ā to represent the current placement of VMs
among J hosts. More specifically, let us denote the current
placement of ith VM as pi, i.e., it is running in Hostpi, we
then have Āipi

= 1 (and all other element in vector Āi as 0)
for ith VM. We formulate the ILP problem as following:

subject to:

Aij =

{
1 if ith VM is on j th host
0 otherwise.

(7)

min
∑

i,j

AijLij

Li
+
∑

i,j

⋅

{
Aij = Āipi

, j ≠ pi
}(Ci

C
−

Bij

B

)
,

(8)
I∑

i=1

Aijui ≤ Uj, ∀j = 1… J,

(9)
I∑

i=1

Aijmi ≤ Mj, ∀j = 1… J,

(10)
I∑

i=1

Aijdi ≤ Dj, ∀j = 1… J,

(11)
I∑

i=1

Aijni ≤ Nj, ∀j = 1… J,

 T. Guo et al.

1 3

where Li is the maximum latency of placing ith VM
among all J hosts, i.e. Li = max⟨Li1,…Lij⟩. Specially, Lij
denotes the expected network latency between a thin cli-
ent that connects to ith VDs and jth host. Ci and Bij denote
the cost and benefit of migrating ith VM from its current
host to a new one. We consider the cost of migrating ith
VM to be the amount of data to be moved and the bene-
fit of migrating to host j be the latency reduction. Further,
we use C and B to denote the maximum cost and benefit
of migrating all I VM. That is, C = max⟨C1,C2 …CI⟩ and
B = max{Bij|∀i = 1… I,∀j = 1… J}. Our objective func-
tion 7 not only considers the normalized latency associ-
ated with new placement decision, but also uses indicator
function 1 to capture the relation between new placement
decision and current virtual desktops to hosts mapping. We
normalize each term to balance the impacts of metric on
determining the placement decision. Constraints (8–11)
ensure the placement decision of VMs satisfy the physical
resource constraints of the hosts while constraints (12–13)
together ensure each VM will only be placed in one host
at every time point. While optimally, our ILP requires long
time to compute placement decisions for large problem
sizes. In the next section, we propose three different greedy
heuristics that efficiently compute with new placement
decisions.

5.2 VMShadow greedy heuristics

5.2.1 Rank-ordered greedy

In this approach, we consider all desktop VMs whose
latency-sensitive rank exceeds a certain threshold Sh and
consider them for relocation in rank order. Thus the highest
ranked desktop VM is considered first for optimization. If
the closest regional cloud site to this VM has insufficient
resources, the greedy heuristic attempts to free up resources
by evicting VMs that have been flagged for reclamation. If
no VMs can be reclaimed or freed-up resources are insuffi-
cient to house the candidate VM, the greedy approach then
considers the next closest cloud site as a possible home
for the VM. This process continues until a new location
is chosen (or it decides that the present location is still the
best choice). The greedy heuristic then considers the next
highest ranked desktop VM and so on. While rank-ordered
greedy always moves the most needy (latency-sensitive)
VM first, it is agnostic about the benefits of these poten-
tial moves—it will move a highly ranked VM from one

(12)
L∑

j=1

Aij = 1, ∀i = 1… I,

(13)Aij ∈ {0, 1}, ∀i = 1… I, j = 1… J,

data center location to another even if the VM is relatively
well-placed and the move yields a small, insignificant per-
formance improvement.

5.2.2 Cost-oblivious greedy

An alternate greedy approach is to consider candidates in
the order of relative benefit rather than rank. This approach
considers all VMs that are ranked above a threshold Sup and
orders them by the relative benefit B of a move. We define
the benefit metric as the weighted sum of the absolute
decrease in latency and the percentage decrease. If l1 and
l2 denote the latency from the current and the new (closest)
data center to the end-user, respectively, then benefit B is
computed as:

where w1 and w2 are weights, l1 − l2 denotes the absolute
latency decrease seen by the VM due to a move and the
second term is the percentage latency decrease. We do not
consider the percentage decrease alone, since that may
result in moving VMs with very low existing latency. For
example, one VM may see a decrease from 100 to 60 ms,
yielding a 40% reduction, while another may see a decrease
from 2 to 1 ms, yielding a 50% reduction. Although the
latter VM sees a greater percentage reduction, its actual
performance improvement as perceived by the user will
be small. Consequently, the benefit metric considers both
the percentage reduction and the absolute decrease. The
weights w1 and w2 control the contribution of each part—
we currently use w1 = 0.6 and w2 = 0.4 to favor the abso-
lute latency decrease since it has more direct impact on
improving performance.

Once candidate VMs are ordered by their benefit, the
cost-oblivious greedy heuristic considers the VM with the
highest benefit first and considers moving it using a pro-
cess similar to rank-ordered greedy approach. The one dif-
ference is that if the VM cannot be relocated to the best
location, this approach recomputes the benefit metric to the
next best site and re-inserts the VM into the list of VMs
in benefit order, and picks the VM with most benefit. Ties
are broken by rank (if two candidates have the same benefit
metric, the greedy considers the higher ranked VM first).

5.2.3 Cost-aware greedy

Cost-oblivious greedy only considers the benefit of
potential moves but ignores the cost of such migrations.
Since the disk and memory state of VMs will need to
be migrated over a WAN, and this may involve copying
large amounts (maybe gigabytes) of data, the costs can
be substantial. Consequently, the final variant of greedy,

(14)B = w1 ⋅ (l1 − l2) + w2 ⋅
(l1 − l2) × 100

l1

Latency-aware virtual desktops optimization in distributed clouds

1 3

known as cost-aware greedy heuristic, also considers the
cost of moving a VM as:

where Sdisk and Smem denote the size of the disk and mem-
ory state of the virtual machine and parameter r captures
the dirtying rate of the VM relative to the network band-
width.2 The dirty rate r could be either estimated by the
network traffic to VD or monitored from hypervisor as the
disk I/O write rates.

The cost-aware greedy approach then orders all candi-
date VMs using B

C
 (i.e. the benefit weighted by the cost).

A candidate with a higher B
C
 offers a higher performance

improvement benefit at a potentially lower migration cost.
The VM with the highest B

C
 is considered first for possible

movement to the closest cloud site. Like before, if this
site has insufficient server resources, then VMs marked
for reclamation are considered for eviction from this site
to make room for the incoming VM. Note, Eq. 15 implic-
itly consider the potential cost of reclamation as one has
to at least free up C amount of disk and memory spaces
by evicting VMs. If no such reclamation candidates are
available, the VM is considered for movement to the next
closest site. The benefit metric to this next site is rec-
omputed and so is the B

C
 metric and the VM is reinserted

in the list of candidate VM as per its new B
C
 metric. The

greedy heuristic then moves on to the next VM in this
ordered list and repeats. Ties are broken using the VMs’
rank.

Our VMShadow prototype employs this cost-aware
greedy heuristic. It is straightforward to make the cost-
aware greedy implementation to behave like the cost-
oblivious or the rank-ordered greedy variants by setting
the cost (for cost-oblivious) and benefit (for rank-ordered
greedy) computation procedures to return unit values.

Avoiding oscillations: to avoid frequent moves or
oscillatory behavior, we add “hysteresis” to the greedy
algorithm—once a candidate VM has been moved to a
new location, it is not considered for further optimiza-
tion for a certain hysteresis duration T. Similarly, any VM
which drops in its latency-sensitivity rank is not evicted
from a local site unless it exhibits consistently low rank
for a hysteresis duration T ′. Moreover, the cost-benefit

(15)C = (Sdisk + Smem) ⋅
1

1 − r
,

2 Live migration of a VM takes place in rounds, where the whole
disk and memory state is migrated in the first round. Since the
VM is executing in this period, it dirties a fraction of the disk and
memory, and in the next round, we must move (Sdisk + Smem) ⋅ r,
where r is the dirtied fraction. The next round will need an
additional (Sdisk + Smem) ⋅ r

2. Thus we obtain an expression:
(Sdisk + Smem) ⋅ (1 + r + r2 +⋯). This expression can be further
refined using different disk and memory dirtying rates for the VM.

metrics avoid moving VMs that see small performance
improvements or those that have a very high data copying
cost during migration.

6 Transparent VM and connection migration

While VMShadow attempts to optimize the performance
of latency-sensitive VMs by moving them closer to their
users, it is critical that such moves be transparent to their
users. The desktop VM should not incur downtime when
being moved from one cloud site to another or encounter
disruptions due to a change of the VM’s network address.
VMShadow uses two key mechanisms to achieve this trans-
parency: live migration of desktop virtual machines over
the WAN, and transparent migration of existing network
connection to the VM’s new network (IP) address. We
describe both mechanisms in this section.

6.1 Live migration over WAN

When VMShadow decides to move a VD from one cloud
site to another, it triggers live migration of the VM over the
WAN. While most virtualization platforms support live VM
migration within a data center’s LAN [8], there is limited
support, if any, for a migration over the wide area. Hence,
we build on the WAN-based VM migration approach that
we proposed previously [4], but with suitable modifications
for VMShadow’s needs.

The WAN-based VM migration that we use in
VMShadow requires changes to the hypervisor to support
efficient WAN migration. It is possible to implement these
modifications of the hypervisor in private clouds where an
enterprise has control over the hypervisor. Similar modifi-
cations are also possible in public clouds where the cloud
provider itself offers a desktop cloud service to users. How-
ever, the desktop cloud service may also be implemented
by a third party that leases servers and storage from a pub-
lic IaaS cloud provider, e.g., derivative clouds [9, 10]. In
such scenarios, the third party should not expect modifica-
tions to the hypervisor.

To support such scenarios also, we employ a nested
hypervisor to implement VMShadow’s migration tech-
niques. A nested hypervisor runs a hypervisor h′ inside a
normal virtual machine that itself runs on a typical hypervi-
sor h; actual user VMs run on top of hypervisor h′. Since
the nested hypervisor is fully controlled by the desktop
cloud provider (without requiring control of the underlying
hypervisor), it enables hypervisor-level optimizations. Note
that using a nested hypervisor trades flexibility for perfor-
mance due to the additional overhead of running a second
hypervisor; however, Xen-Blanket [5], which we use in our
prototype has shown that this overhead is minimal. As a

 T. Guo et al.

1 3

result, VMShadow can run over unmodified public cloud
instances, such as Amazon EC2, and live migrate desktop
VMs from one data center to another. In addition, VMShad-
ow’s WAN migration needs to transfer both the disk and
memory state of the desktop virtual machine (unlike LAN-
based live migration which only moves the memory state
since disks are assumed to be shared). VMShadow uses a
four step migration algorithm, summarized in Fig. 5.

Step 1: VMShadow uses Linux’s DRBD module to cre-
ate an empty disk replica at the target data center location.
It then begins to asynchronously transfer the disk state of
the VM from the source data center to the target data center
using DRBD’s asynchronous replication mode. The rate of
data transfer can be controlled, if needed, using Linux’ traf-
fic control (tc) mechanisms to avoid any performance deg-
radation for the user during this phase. The application and
VM continue to execute during this period and any writes
to data that has already been sent must be re-sent.

Step 2: Once the disk state has been copied to the target
data center, VMShadow switches the two disk replicas to
DRBD’s synchronous replication mode. From this point,
both disk replicas remain in lock step—any disk writes are
broadcast to both and must finish at both replicas before the
write returns from the disk driver. Note that disk writes will
incur a performance degradation at this point since syn-
chronous replication to a remote WAN site increases disk
write latency.

Step 3: Concurrent with Step 2, VMShadow also begins
transferring the memory state of the VM from the source
location to the target location. Like LAN-based live migra-
tion approaches, VMShadow uses a pre-copy approach
which transfers memory pages in rounds [8]. The first round
sequentially transfers each memory page from the source to
the destination. As with the disk, VMShadow can control
the rate of data transfer to mitigate any performance impact
on front-end user tasks. Since the application is running, it
continues to modify pages during this phase. Hence, each
subsequent round transfers the only pages that have been
modified since the previous round. Once the number of

pages to transfer falls below a threshold, the VM is paused
for a brief period and the remaining pages are transferred,
after which the VM resumes execution at the destination.

Since substantial amounts of disk and memory data need
to be transferred over the WANs, VMShadow borrows two
optimizations from our prior work [4] to speed up such
transfers. First, block and page deltas [11] are used to trans-
fer only the portion of the disk block or memory page that
was modified since it was previously sent. Second, caches
are employed at both ends to implement content-based
redundancy(CBR) [4, 12]—duplicate blocks or pages that
have been sent once need not be resent; instead a pointer
to the cached data is sent and the data is picked up from
the receiver cache. Both optimizations have been shown to
reduce the amount of data sent over the WAN by 50% [4].

Step 4: Once the desktop VM moves to a new data
center, it typically acquires a new IP address using DHCP.
Changing the IP address of the network interface will
cause all existing network connections to break and disrupt
user activity. To eliminate such disruptions, VMShadow
employs a connection migration protocol to “migrate”
all current TCP connections transparently to the new IP
address without any disruptions (TCP connections see
a short pause during this transfer phase but resume nor-
mal activity once the migration completes). The connec-
tion migration is triggered after desktop VM is success-
fully migrated and then paused. Immediately afterwards,
VMShadow updates the new mapping rules at proxies.
Once the rules are updated, the migrated VM will be
resumed with the new public IP address, and all subsequent
packets will be rewritten. In summary, the actual traffic
switching occurs after the connection migration protocol
is successful. Once both the VM and connection migration
phases complete, the desktop VM begins executing nor-
mally at the new cloud location. We describe VMShadow’s
connection migration protocol next.

6.2 Connection migration protocol

Different cloud locations are typically assigned different
blocks of IP addresses for efficient routing. As a result,
when a VM moves from one cloud location to another, it is
typically assigned an IP address from the new location’s IP
block and will not retain its original IP address. This will
cause TCP connections to be dropped and result in disrup-
tions to end users’ sessions. To prevent such disruptions,
VMShadow employs a connection migration protocol that
“migrates” these connections to the new IP address.

The issue of mobility, and having to change the IP
address as a result, is a well known problem. There have
been several proposals including HIP [13], LISP [14],
ILNP [15] and Serval [16] that try to address this problem
by separating the host identifier from the network address.

Async. Copy

Spawn Xen-Blanket

Sync. Copy

Live Mem. Transfer

Time (Not to Scale)

Conn. Migration

Pause VM

Setup

Net.

Mem.

Disk.

Fig. 5 VMShadow migration phase using Xen-Blanket. Upon WAN
live migration, a Xen-Blanket (nested hypervisor) VM is spawned
first to receive disk and memory state from source WAN live migra-
tor. It is then followed by a live memory and disk transfer before
briefly pausing the VM. The VM is successfully migrated to the new
Xen-Blanket and ready to use after executing connection migration
protocol

Latency-aware virtual desktops optimization in distributed clouds

1 3

With these approaches, the application connects at the TCP
layer using the host identifier, while the packets are routed
using the network address. When the user (i.e. host) moves,
the network address changes, but the host identifier stays
the same. As a result, TCP connections are not disrupted.
Unfortunately, all these approaches require modifications to
the application to take advantage of seamless mobility.

Instead, here we take a more pragmatic approach so that
VMShadow works seamlessly with existing applications as
they are. VMShadow makes use of a local proxy to imple-
ment a network connection migration protocol. VMShadow
assumes that both end-points for every active connection
on the migrated VM run this proxy (thus, both the thin cli-
ent and the desktop VM need to run the proxy, as do other
servers elsewhere with active TCP connections to the desk-
top VM). However, in the cases where we do not have con-
trol over servers, for example YouTube streaming servers,
we can set up in-network proxy servers that are closer to
VDs. We envision the virtual desktop cloud providers will
be in charge of maintaining these proxy servers. In sum-
mary, as long as the proxy is in the data path for the TCP
connection between end points, it can mask any address
changes by dynamically re-writing the IP headers of the
packets.

To ensure transparency, the desktop VM uses two logi-
cal network interfaces: an internal interface with a fixed,
private IP address and an external interface with the “real”,
but potentially changing, IP address. All socket connec-
tions are bound to the internal interface as the local source
address; as a result, active socket connections never directly
see the changes to the external IP address. The proxy acts
as a bridge between the internal and external network inter-
faces for all packets as shown in Fig. 6. Internally gener-
ated packets have a destination address that is the external
IP address of the remote end host.

The proxy employs dynamic rewriting of packet
headers (analogous to what is done in NAT devices)
to bridge the two interfaces. For all outgoing pack-
ets, the default rewriting rule replaces the source IP of
the internal interface with that of the external interface:
(IPint, ∗) → (IPext, ∗). Thus when the external IP address
changes after a WAN migration, the rewrite rule causes

any subsequent packet to have the new external IP
address rather than the old one. Incoming packets head-
ers are rewritten with the reverse rule, where the current
external IP address is replaced with the fixed internal IP.

After an IP address change of a desktop VM, other
end-points with connections to the desktop VM will
begin seeing packets arriving from the new external IP
address. However, connections on these machines expect
packets from the old external IP address of the desktop
VM. To ensure transparent operation, the local prox-
ies in other end-points intercept packets with the desk-
top VM and apply new rewrite rules beside the default
one. For example, with new rewrite rules, incoming
packets arriving from the desktop VM are rewritten as
(IPnew, ∗) → (IPold, ∗) while outgoing packets to the desk-
top VM see rewrites to the destination IP address as
(∗, IPold) → (∗, IPnew). These two rules ensures that out-
going packets go to the new address of the desktop VM
(and thus are not lost), while incoming packets from the
new IP address are rewritten with the old address before
delivery to applications (that are still given the illusion
of communicating with the old IP address). We illustrate
various scenarios in Fig. 7.

To achieve this transparent migration, the proxies at
both end points use control messages to signal each other
about the change in IP address. This is done by having
the desktop VM send a cryptographically signed mes-
sage to the corresponding proxy informing it of the IP
address change. The cryptographic signing avoids mali-
cious third-parties from sending bogus IP address change
messages and causing a denial of service. A typical IP
address change control message will include the old IP
address and request subsequent packets to be sent to the
new address.

Note that the connection migration protocol is sym-
metric—it assumes an fixed internal interface and an
external interface on all machines. Thus, the protocol can
also handle IP address changes of the thin client or other
machines that the desktop VM communicates with. Fur-
ther, the extra rewrite rules are generated on a per-socket
basis rather than a per-machine basis to support dynamic
connection setup. In particular, connections established
before the IP address change requires rewriting based
on both default and extra rules to maintain connectivity.
Connections opened after the address change talk to the
new address and only need default packet rewriting. How-
ever, for incoming packets, we use the port information
of the connections to distinguish between ones that need
a re-write (connections opened prior to the change) ver-
sus those that do not (those opened after the change). A
general rewrite rule of an outgoing packet is of the form:
(IPint, srcPort, IPold, dstPort) → (IPext, srcPort, IPnew, dstPort).

Pkts

Internal Logical NIC
(Fixed IP)

External Logical NIC
(Public IP)

Proxy
Apps

Pkts

Fig. 6 Illustration of proxy IP bridging. Inside each VM, the proxy
bridges an internal logical NIC with the external one, masking the
potential IP address changes from the higher-level applications

 T. Guo et al.

1 3

6.2.1 Handling NAT devices

Our discussion thus far assumes that all end points have a
publicly routable IP address. However, in many scenarios,
one or both end-points may be behind NAT devices. We
first consider the scenario where the thin client is behind
a NAT (e.g., in a home) while the desktop VM resides in a
public cloud and has a public IP address. In this case, when
the desktop VM is moved from one location to another, it
will no longer be able to communicate with the thin cli-
ent since the NAT will drop all packets from the new IP
address of the desktop. In fact, the desktop VM will not
even be able to notify the proxy on the thin client of its new
IP address (since a “strict NAT” device drops all packets
from any IP address it has not encountered thus far). To
address this issue, we resort to NAT hole punching [17], a
method that opens ports on the NAT to enable the desktop
VM to communicate with the thin client.

VMShadow’s NAT hole punching is part of the con-
nection migration process. It works by notifying the client
proxy of the IP address change from the old IP address of
the desktop VM. In some scenarios, the desktop VM may
be able to determine its new IP address at the destination
before it migrates. This may be possible in enterprise pri-
vate clouds where an IP address is pre-allocated to the VM,
or even in public clouds where one can request allocation
of an elastic IP address independent of VM instances. In
such cases, the proxy on the desktop VM notifies the proxy
on the thin client of its future IP address and requests hole

punching for this new IP address. In scenarios where the
IP address cannot be determined a priori, we assume that
the newly migrated VM will notify the driver domain of
the nested hypervisor at the old location of its new address.
The driver domain can use the old IP address to notify the
proxy at the thin client of the IP address change and conse-
quently request hole punching.

Once the new IP address has been communicated to
the client proxy, it proceeds to punch holes for each active
socket port with the desktop VM. This is achieved by send-
ing a specially marked packet from each active source port
to each active destination port but with the new IP address
as the destination IP of these specially marked packets.
These packets causes the NAT device to open up these
ports for accepting packets from the new IP address of the
desktop VM. NAT devices typically rewrite the source port
number with a specially allocated port number and create a
forwarding rule; packets arriving on this NAT port are for-
warded to the source port at the thin client device. Thus,
a regular outgoing packet from the client to the desktop
VM will see the following rewrites: the source proxy per-
forms the first rewrite (IPint, srcPort, IPold, dstPort)→(IPNAT,
srcPort, IPnew, dstPort). The NAT device then further
rewrites this packet as (IPNATExt

, natPort, IPnew, destPort).
When the first specially marked packet of this form is

received at the desktop VM, it creates a mapping of the old
natPort of the source to the new natPort. Then port numbers
of any outgoing packets are rewritten by replacing the old
natPort with the new natPort created by the hole punching.

P(Int IP, SP, Pub IP, DP) (Ext IP, SP, Pub IP, DP) (Ext IP, SP, Pub IP, DP) (Ext IP, SP, Priv IP, DP) WANP

Int IP --> Exp IP
Iptable rules Iptable rules

Pub IP --> Priv IP

P(Int IP, SP, Old IP, DP) (Ext IP, SP, New IP, DP) (Ext IP, SP, New IP, DP) (Ext IP, SP, Priv IP, DP) WANP

Int IP --> Exp IP
Iptable rules

Old IP --> New IP

Iptable rules
Pub IP --> Priv IP
New IP --> Priv IP

P(Int IP, SP, Old IP, DP)

(NAT IP, SP, New IP, DP)

(Pub IP, NP, New IP, DP) (Pub IP, OP, Priv IP, DP)WANP

NAT

(Pub IP, NP, New IP, DP)

Int IP --> NAT IP
Iptable rules

Old IP --> New IP

Pub IP --> Priv IP
Iptable rules

NP --> OP

New IP --> Priv IP

(a) Both entities have public IP addresses.

(b) One entity’s public IP changes.

(c) A behind-NAT end point tries to communicate to an entity with new public IP address.

Fig. 7 Dynamic rule-based packet headers’ rewriting sequences. We
use four-tuple, i.e., the source IP, source port, destination IP and des-
tination port, to represent a packet. Packets are matched based on the

iptable rules of the proxy (default rule is in rule while new rules are
in red). This ensures that high-level applications only see fixed inter-
nal IP without breaking the TCP connections. (Color figure online)

Latency-aware virtual desktops optimization in distributed clouds

1 3

Note that the specially marked hole punching packet is only
processed by the proxy and then dropped and never deliv-
ered to the application. In our implementation, we simply
assign a TCP sequence number of 1 and have an iptables
rule for dropping potential RST packet. This extension ena-
bles the connection migration protocol to work even when
one of the end-points is behind a NAT device. The proto-
col can be similarly extended with hole punching packets
in both directions when both end-points are behind NAT
devices. Note in this scenario, the entity that moved from
one NAT to another will need to find out the IP address of
the new NAT device first before proceeding hole punching.
We omit the details here due to space constraints.

7 VMShadow implementation

We have implemented a prototype of VMShadow using
Linux 3.1.2 and modified Xen-Blanket 4.1.1 [5]. Our pro-
totype is written in C and Python and consists of several
interacting components as shown in Fig. 3. In the follow-
ing, we describe the design trade-offs, functionalities and
implementation details of each component.

7.1 Fingerprinting engine

Our fingerprinting engine includes a distributed traffic
collector in each host and a central fingerprinting engine
running inside the cloud manager. Its main tasks include
collecting network-level traffic information from each
host and calculating the latency-sensitive score for each
virtual desktop. We implement the traffic collector com-
ponent in Xen-Blanket’s driver domain (dom0). It uses
python interfaces to the Linux netfilter library, more spe-
cifically libnetfilter_queue to copy packets queued by the
kernel packet filter into user-space for analysis; it periodi-
cally samples the traffic and sends the statistics to the fin-
gerprinting engine running inside the cloud manager. The
hypervisor-based fingerprinting system has negligible over-
head, and does not interfere with a virtual desktops’ nor-
mal performance. Specifically, the overhead can be broken
down into copying packets, generating and sending statis-
tics to the fingerprinting engine. The dominating overhead
comes from copying every network packet, but can be dra-
matically reduced by mapping kernel buffers to user space.
This allows sharing buffers between kernel and user space
applications, and essentially achieving zero copying over-
head. The caveat is the kernel needs to support zero-copy
optimizations. For each active virtual desktop, cloud man-
ager then analyzes the normalized network traffic, normal-
ized protocol traffic and percentage of normal internet traf-
fics (as described in Sect. 4) based on the collected network
traffics and the maintained list of latency-sensitive ports

and server addresses. A relative latency-sensitive scores is
assigned to each virtual desktop at the end of fingerprinting
process.

7.2 WAN live migrator

Our WAN live migrator takes any running virtual desk-
top and migrates them to a different host as fast as possi-
ble without disrupting its functionalities. We implement
the migrator on top of the nested hypervisor, i.e., the Xen
related code in Xen-Blanket, by modifying live migration
code in Xen. More specifically (refer to Fig. 5 for a picto-
rial detail), we include DRBD-based disk state migration to
concurrently transfer virtual machine disk asynchronously.
For transferring memory, we employing multiple optimi-
zations, i.e., zero page, memory page deltas and content-
based redundancy elimination [4] to optimize the transfer-
ring over WAN. To mitigate the live migration impact’s on
the client traffic, we also implement the rate control mecha-
nisms to control the rate of state transfer over WAN links.

7.3 Connection proxy

Our connection proxy implements our connection migra-
tion protocol discussed in Sect. 6.2 as a python process.
We design and implement the proxy in a way that is easy
and flexible to run in any end points such as the VDs and
the thin clients. The proxy listens on a well-known port,
to receive (and send) cryptographically signed messages
for announcing IP address changes. It uses the libnet-
filter_queue library to intercept outgoing and incom-
ing packets and rewrites the corresponding TCP headers as
specified by the current rewrite rules in iptable. Packets
are reinserted into the queue once the headers have been
rewritten. We use the python scapy library to generate the
appropriate packets for NAT hole punching. Our choice of
implementing the proxy in user-space is based on the trade-
off of the implementation ease and overhead compared to a
kernel implementation. In production use where efficiency
has higher priority, one should implement the protocol in
the kernel space to reduce the data copy overhead as well
as iptable rules matching. We evaluate the overhead of
our user-space proxy in Sect. 8.5.

7.4 Cloud manager

We use a centralized-architecture in implementing the
cloud manager that runs periodically. It has interfaces to
both fingerprinting engines and WAN live migrators that
run distributed on each host. After each time period, our
cloud manager feeds the latency-sensitive scores calculated
by fingerprinting engine to the algorithm engine, to fig-
ure out the new virtual desktop placement. Our algorithm

 T. Guo et al.

1 3

engine implements both the ILP and cost-aware greedy
algorithm. The migration manager then compares the new
placement plan with the current placement to figure out a
migration table that has three columns, i.e., the source host,
the destination host and the target virtual desktop. Each row
in the table represents a migration that needs to be actuated
to improve the user-perceived performance. Our migration
manager execute the specified migrations by contacting
the WAN live migrator as well as the connection proxy on
each source host. To avoid unnecessary performance degra-
dation, our cloud manager employs two intuitive methods
that both aims at reducing the percentage of live migration
bandwidth usage. The first one is to limit the number of
concurrent live migrations between the same hosts and the
second one is to control the total bandwidth usage of live
migration.

8 Experimental evaluation

In this section, we first describe our experimental setups
and then present our experimental results. In designing our
experiments, we are interested in answering the following
key questions.

1. How accurate is our black-box fingerprinting algorithm
in distinguishing latency-sensitive desktop VMs from
the rest?

2. What is our proposed cost-aware greedy algorithm
compared to ILP in optimizing the location of desktop
VMs?

3. What is the potential overheads of using live migra-
tion to move desktop VMs from one cloud location to
another and the performance benefits to desktop VMs’
users?

4. How efficient is our connection migration proxy in
seamlessly transferring the TCP connections?

5. Lastly, how does our prototype VMShadow work in
resolving complex scenarios by detecting latency-sen-
sitive desktop VMs and improving their performances
within resource constrains?

8.1 Experimental setup

The testbed for our evaluation consists of hybrid clouds
with a private cloud in Massachusetts and Amazon EC2
public clouds across different locations as shown in Fig. 8.
The private cloud consists of 2.4 GHz quad-core Dell serv-
ers running Centos 6.2 and GNU/Linux kernel 2.6.32. On
Amazon EC2, we use extra-large instances (m3.xlarge),
each with 4 VCPUs, at two sites: US-West in Oregon and
US-East in Virginia. All machines run modified Xen-Blan-
ket 4.1.1 and Linux 3.1.2 as Dom0.

Our desktop cloud consists of Ubuntu 12.04 LTS desk-
tops that are installed with vnc4server as the VNC server.
Each desktop VM will have only one desktop session and
accept connections from one thin client. We use VNC as
the remote desktop protocol3 for the ease of instrumenting
the according implementations. For laptop-based thin client
machines, we use a modified open-source version of python
VNC viewer to automate the experiment processes. For
mobile phone, i.e., iPhone, thin client, we use VNC viewer
acquired from App Store and manually perform user activi-
ties. Users that connect to the Ubuntu desktop will be able
to run a variety of desktop applications, including OpenOf-
fice for editing documents, Google Docs for online editing,
Chrome browser4 for web browsing and watching various
online streaming, i.e., Youtube, Hulu and Netflix, Thunder-
bird email client and Movie Player for local video play-
back. Each desktop VM is assigned 1 GB memory, 1 VCPU
and has a 8 GB disk of which 1.32 GB is used and runs
inside Xen-Blanket dom0.

8.2 Accuracy of black-box VM fingerprinting

Black-box VM fingerprinting provides us the latency-sen-
sitive scores for each desktop VMs without peeking inside
the user actives. In this experiment, we first show that VDs
with different latency-sensitive requirement exhibit vastly
different network-level characteristics and then we dem-
onstrate that our approach is able to assign correct relative
latency-sensitivity scores to different VMs running various
applications. We use Wireshark running on Dom0 of Xen-
Blanket to collect packet-level traces for each VMs during
the experiment periods.

3 Our focus is not on comparing the performance differences of dif-
ferent remote desktop protocol.
4 We choose Chrome browser due to the fact that Netflix is not sup-
ported in the default Firefox browser.

Network Latency = 96.15 ms

Network Latency = 84.03 ms

N
et

w
or

k
La

te
nc

y
=

14
.3

7
m

sOregon

Virginia

Massachusetts

Fig. 8 Illustration of cloud sites setup in our experiments. Three
cloud sides used for our experiments: a private cloud side in Massa-
chusetts, and EC2 sites in Virginia and Oregon

Latency-aware virtual desktops optimization in distributed clouds

1 3

8.2.1 Characterizing network activities of desktop VMs

We use VNC viewer from our laptop-based thin client to
perform four distinct types of user actives, i.e., watching
Youtube video, browsing graphic-rich websites, text editing
using OpenOffices and watching video locally on the desk-
top VM. In each case, we sample the traffic generated by
the VM in a 3-min measurement window after a warmup
period and then repeat the process five times. We compute
the average statistics across all five-runs and use them to
characterize the network activities of each VMs.

Table 2 summarizes the different network activities of
desktop VMs for these four activities. As expected, You-
Tube viewing consumes higher network bandwidth both
from YouTube servers and for the remote desktop protocol
display; video playback from a local file does not consume
network bandwidth, but the data transfer for VNC is still
high due to the video playback. Web browsing and text
editing consume very little bandwidth. Note in our finger-
printing algorithm, both YouTube and graphic-rich brows-
ing will be labeled as latency-sensitive traffic based on the
server ports and addresses.

8.2.2 Assigning latency-sensitive scores to desktop VMs

Based on the above observations, we next evaluate our fin-
gerprinting algorithm that favors and assign relative high
scores to VMs based on their latency sensitivities. We use
two models of iPhones, i.e. iPhone 6 and iPhone 6+, as

our mobile thin clients and collect necessary network-level
data using the same setup as in previous experiment. Our
measurement data, together with our list of latency sensi-
tive ports and server addresses, are provided as input to our
fingerprinting algorithm in Sect. 4 to calculate the scores.

Figure 9 compares the different latency scores assigned
for desktop VMs that are running various applications.
In general, our fingerprinting algorithm is able to assign
“correct” relative scores to VMs running different appli-
cations. Specifically, both online streaming applications,
disregarding the service providers, and local video play-
back are assigned with high latency scores. However, the
score of watching local video using iPhone 6 is much lower
than its counterparts. Recall that the relative latency score
is calculated based on normalized throughput, protocol
throughput and latency-sensitive throughput. Because local
video does not generate internet traffic, it has a lower rela-
tive score compared to online streaming. In addition, with
adaptive bitrate streaming, the amount of data transferred
depends on screen size. This means iPhone 6 with smaller
screen will have lower relative score than iPhone 6+. Since
it heavily relies on the application bandwidths demand in
calculating the scores, the results will be biased for thin cli-
ents with different screen size. To further improve the accu-
racy of latency scores, we could apply the algorithm based
on the screen size of thin clients. Graphic-rich browsing,
such as “imgur.com”, is considered more latency-sensitive
compared to online editing using Google docs. Lastly,
local editing, with a score of 0.001, is regarded to be not

Table 2 Characterization of desktop VMs’ network activities

Virtual desktops running different applications exhibit different network characteristics, i.e., remote protocol traffic and Internet traffic

Uplink traffic Downlink traffic
Youtube Local video Browsing Text edit Youtube Local video Browsing Text edit

Non-VNC traffic (%) 37.7 0 0.67 0 53.7 0 0.62 0
Non-VNC bandwidth (KB/s) 1.85 0 0.0083 0 63.6 0 0.0059 0
Total bandwidth (KB/s) 74.6 54.5 17.94 17.14 65.8 1.54 0.454 0.86

Fig. 9 Comparison of latency sensitive scores for different desktop
VMs. Online streaming applications have higher scores compared to
the other types of applications for both mobile clients. For both cli-

ents, all but one latency score match our hypothesis. But this “out-of-
order” ranking can be remedied using threshold scores as discussed
in Sect. 5

 T. Guo et al.

1 3

sensitive to latency at all and is potential candidate for
resource reclamation.

8.2.3 Result

Desktop VMs that run different applications exhibit differ-
ent level of network activities. Based on this observation,
our fingerprinting algorithm is able to correctly favor and
distinguish latency-sensitive desktop VMs, i.e. the ones
that run online streaming or local video playback, from
non-sensitive desktop VMs, i.e, local text editing.

8.3 Comparing greedy shadow algorithm to ILP

In this experiment, we study the performance differences
between our cost-aware greedy algorithm and integer lin-
ear program (ILP) algorithm that is able to provide optimal
results but with higher execution time. Both algorithms are
implemented in VMShadow’s Cloud Manager. Specifically,
we implemented the ILP algorithm using Python’s Convex
optimization package CVXOPT that aims to minimize the
latency reductions. We compare the greedy algorithm with
the ILP approach in terms of scalability, i.e. execution time,
and effectiveness, i.e. latency decrease percentage of desk-
top VMs.

To stress test both algorithms, we create synthetic
scenarios with increasing numbers of desktop VMs and
cloud locations and measure the execution time and
effectiveness of both algorithms. In one case, we fix the
number of desktop VMs to 2000 and vary the number of
available cloud locations from 2 to 12. In another case,
we fix the number of cloud locations to 40 and vary the
number of desktop VMs in the cloud from 100 to 800.
For each scenario, we run both version of algorithms ten
times by assigning uniformly generated latency-sensitive
scores to each VM and uniformly pick a set of data cent-
ers from a pool of forty locations. We use the average

results across all runs to represent the performance and
effectiveness for each scenario.

Figure 10 compares the execution time of these two
algorithms in these two cases separately. As expected, the
execution time of the ILP approach increases significantly
with both increasing location choices (as in Fig. 10b)
and increasing VMs (as in Fig. 10a); the execution time
of the greedy approach, in comparison, remains flat for
both scenarios. Figure 11 evaluates the effectiveness of
the two algorithms in reducing the latency of desktop
VMs via migrations. Our latency reduction achieved by
our greedy approach is within 51–56% of the “optimal”
ILP approach when our greedy algorithm has access to
all forty data center locations. In the case of assigning
all 2000 VMs to cloud locations, the effectiveness of our
greedy approach is impacted either by the limited amount
of cloud locations, (in the case of only two cloud loca-
tions), or the complexity growths. In general, the ILP
approach is a better choice for smaller settings (where
it remains tractable), while greedy is the only feasible
choice for larger settings. Note also that our experiments
stress test the algorithms by presenting a very large num-
ber of migration candidates in each run. In practice, the
number of candidate VMs for migration is likely to be a
small fraction of the total desktop VMs at any given time;
consequently the greedy approach will better match the
choices made by the ILP in these cases.

8.3.1 Results

VMShadow’s greedy algorithm is able to achieve around
51–56% effectiveness with marginal execution time com-
pared to “optimal” ILP approach, even presented with a
large number of migration candidates and potential cloud
locations.

is set to 40. 2000.
(a) The number of cloud locations (b) The number of VMs is set to

Fig. 10 Execution time comparisons between ILP and greedy algo-
rithms. In general, greedy algorithm takes significant less time
compared to ILP algorithm. For both algorithms, as the number of
VMs to be assigned or the number of candidate cloud locations to be
picked increase, the running time increases accordingly

is set to 40.
(a) The number of cloud locations (b) The number of VMs is set to

2000.

Fig. 11 Comparison of latency reduction percentage between ILP
and greedy algorithms. When the number of VMs to be assigned
increase, the reduction is bounded by the collections of data center
locations. As the number of data center locations increases, ILP is
able to utilize the data center locations to find optimal solutions for
each VMs

Latency-aware virtual desktops optimization in distributed clouds

1 3

8.4 Live migration and virtual desktop performance

VMShadow’s WAN live migrator actuates the migration
decisions generated by the greedy shadow algorithm on
hybrid cloud platforms by leveraging nested virtualiza-
tion. In this experiments, we study the overheads of our
WAN-based live migration approach, in terms of migra-
tion costs, as well as the user perceived performance
benefits. We use the two Amazon sites in Oregon (US-
West) and Virginia (US-East) for this experiment. The
thin client is located in the Massachusetts private cloud.
We run two desktop VMs in US-West. The first desktop
represents a user running a text editing application for the
first 50 s and then watching a YouTube video, while the
second desktop represents a user only performing word
editing. We perform live migration of both VMs at t = 50
s from Oregon data center to Virginia one, which is a
site closer to the Massachusetts-based thin client, with
the help of VMShadow’s WAN migration component.
For each live migration, we measure the total amount of
data transferred and the time taken for the live migration

as well as the time intervals between every VNC frame
request and update.

As shown in Table 3, the delta-based and CBR optimi-
zations used by VMShadow allow WAN migrations to be
efficient; VMShadow migrates desktop VMs with 1 GB
memory coast-to-coast in less than 165 s. It is useful to
note that the pause time (i.e., the time when a user may per-
ceive any unresponsiveness) for the applications as a result
of the migration is relatively small, between 2.5 and 2.8 s.
The total migration time is determined by how much mem-
ory to transfer and how fast memory is dirtied. Therefore,
it takes longer to migrate the virtual desktop that runs You-
Tube than Word editing. But for the pause time, it is deter-
mined by the amount of dirty memory to transfer in the last
iteration. When watching YouTube video, data is being
streamed and prefetched before the last iteration. Thus, the
downtime of the YouTube virtual desktop is sightly shorter.

Figure 12 shows the response time before and after the
migration for both desktop VMs. We define the response
time to be the time interval between sending a refresh
request and receiving a response. Therefore, the lower the
response time, the higher the refresh rate. Note also that
the VNC player only sends a refresh request after receiving
a response to its previous request. Thus the response time
for such players is upper bounded by the network round-
trip time. As shown in the Fig. 12a, initially the refresh rate
is low since word editing does not require frequent refresh.
The refresh rate increases when the user begins watch-
ing YouTube, but the refresh rate is bounded by approxi-
mately 100 ms RTT between Oregon and Massachusetts,
which limits VNC to no more than 10 refreshes per second
(which is not adequate for 20FPS Youtube video). Once
the VM has migrated from US-West to US-East, the RTT
from the thin client to the desktop VM drops significantly
(and below the dotted line indicating the minimum refresh
rate for good video playback), allowing VNC to refresh

Table 3 Comparison of transcontinental WAN migration of desktop
VMs

Desktop VMs are migrated from Amazon EC2’s Oregon data center
to Virginia data center using VMShadow that is optimized with delta-
based and CBR techniques. We observe a slightly more memory and
disk data transfer for desktop VM that runs more applications. The
migration pause time is due to the last iteration of memory transfer-
ring and TCP connection migration

Word + YouTube Word

Mem (GB) 0.56 0.54
Disk (GB) 1.36 1.34
Migration time (s) 165 149
Pause time (s) 2.48 2.8

Live Migration Phase
Live Migration Phase

Word Editing

Watching YouTube

(a) Latency-sensitive desktop VM. (b) Latency-insensitive desktop VM.

Fig. 12 Comparison of WAN live migration’s impact on desktop
VMs running various applications. After migration, latency-sensitive
desktop VM that runs online streaming achieves higher VNC frame
update frequency due to lower RTT, directly improving user experi-

ence. On the other hand, latency-insensitive desktop VM that runs
text editing application does not see a obvious improvement after
migration

 T. Guo et al.

1 3

the screen at an adequate rate. Figure 12b depicts the per-
formance of the Word editing desktop before and after the
live migration. As shown, word editing involves key- and
mouse-clicks and do not require frequent refreshes due to
the relatively slow user activities. Thus, the refresh rate
is once every few hundred milliseconds; further a 100 ms
delay between a key-press and a refresh is still tolerable
by users for interactive word editing. Even after the migra-
tion completes, the lower RTT does not yield a direct ben-
efit since the slow refresh rate, which is adequate to cap-
ture screen activities, is the dominant contribution to the
response time.

8.4.1 Results

Migrating a desktop VM trans-continentally takes about 4
mins depending on the workload while incurring 2.5–2.8
s pausing time. Further, not all desktop applications see
benefits from migrating to a closer cloud site, demon-
strating our premise that not all desktop applications are
latency-sensitive.

8.5 Connection migration proxy overhead

Our connection migration proxy handles the TCP con-
nection migration in the case of public IP address change
caused by WAN live migration. In this experiment, we
evaluate the overhead of running our proxy at each desktop
VM, specifically the overheads of processing each packet
and rewriting their headers. To conduct this micro-bench-
mark, we have the desktop VM connect to a server machine
and establish an increasing number of TCP socket connec-
tions. The desktop VM then sends or receives 10,000 pack-
ets over each socket connection and record the overheads
incurred by the proxy as we increase the number of con-
current socket connections from 8 to 64. For each measure-
ment data, We repeat this experiment for 10 times to gather
all the measurement data for results in Table 4 and Fig. 13.

The proxy overhead includes (1) data copying overhead
incurred by libnetfilter Queue in copying packets from ker-
nel space to user-space and copying back to re-insert pack-
ets, (2) matching a packet to rewrite rules, and (3) rewrit-
ing packet headers. Table 4 depicts the per-packet overhead
incurred by the proxy across all runs. As shown in the table,
our user-space proxy adds a 3.37 ms processing latency to

each outgoing and incoming packet, and 13.2 μs packet
header rewriting-related latency. This means that 98.5%
of the additional latency is due to the overhead of copying
packets between kernel and user space; the table shows a
mean 3.36 ms overhead of data copying. This overhead can
be eliminated by moving the proxy implementation into
kernel space. Figure 13 depicts the total processing time
and copying overheads as the number of connections var-
ies from 8 to 64. As expected, the per-packet copying over-
head is independent of the number of connections. So is the
overhead of rewriting headers for a given packet. As the
number of connections grows, the number of rewrite rules
grow in proportion, so the overhead of matching a packet to
a rule grows slightly, as shown by the slight increase in the
total processing overhead; this total overhead grows from
3.485 to 3.976 ms. Note that our implementation uses a
naïve linear rule matching algorithm and this overhead can
be reduced substantially using more efficient techniques
such as those used in routers to match ACLs.

8.5.1 Result

The dominant overhead of our proxy is due to data copying
between kernel and user-space, with relatively efficient per-
packet header rewrites and rule matching.

8.6 VMShadow case study

Lastly, we evaluate and show the work progress of
VMShadow in fingerprinting and assigning latency-sen-
sitive scores, and using WAN live migrations in resolving
complex scenarios for improving the VDs’ performance.
The series of migration are depicted in Fig. 14.

In this experiment, we consider three different types
of applications, i.e., local video, text editing and online
streaming running inside four identical VMs. For experi-
mental purpose, we constrain US-East and US-West

Table 4 Per-packet proxy overhead

We average the data copying and header rewriting

Total time Copy time Rewrite time

Average (ms) 3.375 3.36 0.0133
Std. Dev. 0.022 0.034 0.0042

Fig. 13 Proxy processing overhead of TPC packet. Proxy overhead
comprises copying network data between kernel and user-space and
manipulating packets, i.e., iptable rule matching and header rewriting.
The left bar group demonstrates the dominating copying overhead
that is relatively constant to the number of active TCP connections

Latency-aware virtual desktops optimization in distributed clouds

1 3

sites to both have a capacity of hosting 4 VMs each. Ini-
tially only the word editing VM is located at US-East,
while the other three are located in US-West. At time
T1, VM1 and VM2 with local video and online stream-
ing are ranked high as latency-sensitive and VMShadow
triggers their migrations to closer Virginia cloud site.
At time T2, two new desktop VMs, i.e., VM5 and VM6

, running video applications are requested and started in
Oregon data center. Both of these VMs are also flagged
as latency-sensitive and VM5 is assigned higher latency-
sensitive score. To accommodate both of these two VMs
in the Virginia data center (currently only has capac-
ity for one more VM), VMShadow first migrates higher
rank VM5 while at the same time reclaims resource by
moving lower ranked VM4 running text editing from
Virginia to Oregon. At time T3 after VM4 has been suc-
cessfully migrated, VM-Shadow then continues the pro-
cess of migrating VM6. At time T4, we repeat the event
of requesting a new virtual desktop for the user to watch
a video streamed from YouTube. This leads to another
swap between the newly requested online streaming
VM7 in US-West and the slightly lower ranked VM1 in
US-East. Eventually at time T5, we end up having all the
highly ranked desktop VMs running close to their end-
users on the east coast, with lower ranked VMs running
in US-West.

Figure 15 depicts the VNC response time for the three
desktop VMs running different applications before, during
and after their migrations in the above scenario. As shown,
the first two VMs have latency-sensitive video activities,
and the VNC performance improves significantly after a
migration to the US east coast (from 300 to 41.7 ms). The
third VM has document editing activity, which does not
suffer noticeably despite a reclamation and a migration to
west coast, which is further away to its user.

8.6.1 Results

In this case study, we demonstrate VMShadow’s ability to
discriminate between latency-sensitive and latency-insensi-
tive desktop VMs and to trigger appropriate WAN migra-
tions to improve VNC response time in an artificially con-
strained cloud environments.

9 Related work

The problem of placing VMs in data centers has been
extensively studied, most often as optimization problems,
e.g., energy consumption minimization [18–21], or perfor-
mance maximization [22–24]. However, much of the focus
has been, and continues to be, on placing VMs within a sin-
gle data center. Approaches include devising heuristic algo-
rithms [25, 26] or even formulating placement as a multi-
resource bin packing problem [27–29]. Others [30, 31]
have even proposed placement and migration approaches
that minimize data transfer time within a data center.

Placement of VMs in a distributed cloud [32, 33] is
complicated by additional constraints such as the inter-data
center communication cost [34–38]. For example, Steiner
et al. [38] demonstrate the challenges of distributing VMs
in a distributed cloud using virtual desktop as an example
application. There have been a few recent efforts aimed at
addressing placement in the distributed cloud [23, 39, 40].
These approaches aim to optimize placement using approx-
imation algorithms that minimize costs and latency [39], or
through greedy algorithms that minimize costs and migra-
tion time [40–42]. In this work, we dynamically place desk-
top VMs according to their latency-sensitivities. We seek
to balance the performance benefit with the migration cost
by taking multiple dimensions into account, including the

VM1
VM3

T3 T4

Online Streaming

VM2

VM1
VM3

T1

US-East VM4
VM2

VM1
VM4

VM5
VM3

VM6

T2

VM4
VM3

VM5
VM1

VM2

VM4

VM7

VM5

VM6

VM2

US-West

1

1

VM7
VM4

VM3

VM6 VM1

VM2

2

VM6

VM5

3

4

T5

Local Video Word Editing

Fig. 14 Illustration of a series of migrations to improve the perfor-
mance of Desktop VMs. We consider a simplified scenario with two
cloud locations, one is closer and the other is further to our thin cli-
ents in Massachusetts. VMShadow automatically identifies and prior-
itizes latency-sensitive desktop VMs, i.e., VDs that run local video

and online streaming applications, and migrates them to the US-East
cloud location. To accommodate latency-sensitive VMs in a resource-
constrained cloud location, VMShadow reclaims the resource by
migrating non latency-sensitive VDs to further cloud

 T. Guo et al.

1 3

virtual desktop user behavior, traffic profiles, data center
locations and resource availabilities.

The latency-sensitivity of an application is crucial in
determining its placement. There has been prior work that
evaluated the efficiency of thin-client computing over the
WAN and showed that network latency is a dominating fac-
tor affecting performance [43, 44]. More recently, [45, 46]
propose per-user models that capture the usage profiles of
users to determine placement of the front- and back-ends of
a desktop cloud.

The ability to manipulate the VM locations agilely,
either by cloning [47, 48] or migrating, is the primitive
that allows us to adapt to changing latency-sensitivity
of VMs. Virtualization platforms provide mechanisms

and implementations to achieve LAN live migration with
minimal disruption [8, 49]. Multiple efforts [50–53] have
also sought to improve efficiency by either minimizing the
amount of data transferred [52, 54] or optimizing the num-
ber of times data was iteratively transferred [50].

Disruption-free WAN live migration [4, 5, 55, 56] is
challenging due to lower wide area bandwidths, larger
latencies, and changing IP addresses. Moreover, different
cloud locations can run different virtualization platforms.
Xen-Blanket [5] provides a thin layer on top of Xen to
homogenize diverse cloud infrastructures. CloudNet [4]
proposed multiple optimization techniques to dramatically
reduce the live migration downtime over the WAN. It also
tried to solve the problem of changing IP addresses by
advocating “network virtualization” that involved network
routers.

Others [57] have suggested using Mobile IPv6 to reroute
packets to the new destination. There have also been sev-
eral proposals [13–16] that attempt to address the general
problem of seamless handover of TCP connections across
IP address changes. In general all these approaches require
changes; either to the applications, the network, or both.
In our work, we implement a prototype of VMShadow in
Xen by reusing some ideas from CloudNet [4] and Xen-
Blanket [5] and use a light-weight connection migration
proxy that rewrites packet headers to cope with IP address
changes and also to penetrate NATs.

10 Conclusions and future work

In this paper, we presented VMShadow, a system that
automatically optimizes the location and performance of
VM-based desktops, with dynamic changing needs, run-
ning different types of applications. VMShadow performs
black-box fingerprinting of a desktop VM’s network traffic
to infer latency-sensitivity and employs a greedy heuristic
based algorithm to move highly latency-sensitive desktop
VMs to cloud sites that are closer to their end-users. We
empirically showed that desktop VMs with multimedia
applications are likely to see the greatest benefits from such
location-based optimizations in the distributed cloud infra-
structure. VMShadow employs WAN-based live migration
and a new network connection migration protocol to ensure
that the desktop VM migration and subsequent changes
to the VM’s network address are transparent to end-users.
We implemented a prototype of VMShadow in a nested
hypervisor and demonstrated its effectiveness for optimiz-
ing the performance of VM-based desktops in our Mas-
sachusetts-based private cloud and Amazon’s EC2 cloud.
Our experiments showed the benefits of our approach for
latency-sensitive desktops VMs, e.g., those that are running
multimedia applications.

Live Migration Phase

US-East
US-West

1 that ran Internet Streaming application.

Live Migration Phase

US-East

US-West

2 that ran local video application.

Live Migration Phase

US-East
US-West

(a) Migration of VM

(b) Migration of VM

(c) Migration of VM3 that ran local word editor.

Fig. 15 Performance case study of migrating different latency-sensi-
tive VMs. Decisions are made to migrate VM1 and VM2 to US-East,
to be closer to user. When US-East is resource-constrained, low-
ranked VM3’s resources are reclaimed by migrating it back to US-
West to free up resources for latency-sensitive VM2

Latency-aware virtual desktops optimization in distributed clouds

1 3

In future work, we plan to study the efficacy of using
VMShadow for various virtual desktop applications and for
other cloud applications beyond virtual desktops.

Acknowledgements We would like to thank all our reviewers for
their comments and suggestions. This research was supported by NSF
Grants CNS-1117221, CNS-1345300 and OCI-1032765.

References
 1. Guo, T., Gopalakrishnan, V., Ramakrishnan, K., Shenoy, P., Ven-

kataramani, A., Lee, S.: Vmshadow: optimizing the performance
of latency-sensitive virtual desktops in distributed clouds. In:
Proceedings of the 5th ACM Multimedia Systems Conference,
pp. 103–114. ACM (2014)

 2. Amazon WorkSpaces. https://aws.amazon.com/workspaces/
 3. Microsoft Desktop virtualization. https://www.microsoft.com/

en-us/cloud-platform/desktop-virtualization
 4. Wood, T., Ramakrishnan, K.K., Shenoy, P., Van der Merwe, J.:

CloudNet : dynamic pooling of cloud resources by live WAN
migration of virtual machines. In: Proceedings of ACM SIG-
PLAN/SIGOPS conference on Virtual Execution Environments
(VEE) (2011)

 5. Williams, D., Jamjoom, H., Weatherspoon, H.: The xen-blanket:
virtualize once, run everywhere. In: Proceedings of ACM Euro-
Sys (2012)

 6. Response times: the 3 important limits. http://www.nngroup.
com/articles/response-times-3-important-limits/

 7. Katz-Bassett, E., John, J.P., Krishnamurthy, A., Wether-
all, D., Anderson, T., Chawathe, Y.: Towards ip geolocation
using delay and topology measurements. In: Proceedings of
the 6th ACM SIGCOMM Conference on Internet Measure-
ment, IMC ’06, pp. 71–84. ACM, New York, NY, USA (2006).
doi:10.1145/1177080.1177090

 8. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach,
C., Pratt, I., Warfield, A.: Live migration of virtual machines. In:
Proceedings of USENIX NSDI (2005)

 9. Heroku:Cloud Application Platform. https://www.heroku.com/
 10. Sharma, P., Lee, S., Guo, T., Irwin, D., Shenoy, P.: Spotcheck:

Designing a derivative iaas cloud on the spot market. In: Pro-
ceedings of the Tenth European Conference on Computer Sys-
tems, EuroSys ’15, pp. 16:1–16:15. ACM, New York, NY, USA
(2015). doi:10.1145/2741948.2741953

 11. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N.,
Warfield, A.: Remus: high availability via asynchronous virtual
machine replication. In: Proceedings of USENIX NSDI (2008)

 12. Aggarwal, B., Akella, A., Anand, A., Balachandran, A., Chitnis,
P., Muthukrishnan, C., Ramjee, R., Varghese, G.: Endre: an end-
system redundancy elimination service for enterprises. In: Pro-
ceedings of USENIX NSDI (2010)

 13. Host Identity Protocol (HIP). http://tools.ietf.org/html/rfc5201
 14. Locator/ID Separation Protocol (LISP). http://www.lisp4.net/
 15. Identifier-Locator Network Protocol (ILNP). http://tools.ietf.org/

html/rfc6740.txt
 16. Nordström, E., Shue, D., Gopalan, P., Kiefer, R., Arye, M., Ko,

S.Y., Rexford, J., Freedman, M.J.: Serval: An end-host stack for
service-centric networking. In: Proceedings of USENIX NSDI
(2012)

 17. Ford, B., Srisuresh, P., Kegel, D.: Peer-to-peer communication
across network address translators. In: Proceedings of USENIX
Annual Technical Conference (2005)

 18. Dong, J., Jin, X., Wang, H., Li, Y., Zhang, P., Cheng, S.:
Energy-saving virtual machine placement in cloud data

centers. In: Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, pp. 618–
624 (2013). Doi:10.1109/CCGrid.2013.107

 19. Le, K., Bianchini, R., Zhang, J., Jaluria, Y., Meng, J., Nguyen,
T.D.: Reducing electricity cost through virtual machine place-
ment in high performance computing clouds. In: Proceedings
of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, p. 22. ACM (2011)

 20. Teng, F., Deng, D., Yu, L., Magouls, F.: An energy-efficient
vm placement in cloud datacenter. In: High Performance Com-
puting and Communications, 2014 IEEE 6th Intl Symp on
Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on
Embedded Software and Syst (HPCC,CSS,ICESS), 2014 IEEE
Intl Conf on, pp. 173–180 (2014)

 21. Wu, G., Tang, M., Tian, Y.C., Li, W.: Energy-Efficient Virtual
Machine Placement in Data Centers by Genetic Algorithm,
pp. 315–323. Springer, Berlin, Heidelberg, Berlin, Heidelberg
(2012). doi:10.1007/978-3-642-34487-9_39

 22. Do, A.V., Chen, J., Wang, C., Lee, Y.C., Zomaya, A.Y., Zhou,
B.B.: Profiling applications for virtual machine placement in
clouds. In: Cloud Computing (CLOUD), 2011 IEEE Inter-
national Conference on, pp. 660–667 (2011). doi:10.1109/
CLOUD.2011.75

 23. Guo, T., Shenoy, P.: Model-driven geo-elasticity in database
clouds. In: Autonomic Computing (ICAC), 2015 IEEE Inter-
national Conference on, pp. 61–70. IEEE (2015)

 24. Jiang, J.W., Lan, T., Ha, S., Chen, M., Chiang, M.: Joint vm
placement and routing for data center traffic engineering. In:
INFOCOM, 2012 Proceedings IEEE, pp. 2876–2880. IEEE
(2012)

 25. Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Towards
predictable datacenter networks. In: Proceedings of the ACM
SIGCOMM (2011)

 26. Guo, C., Lu, G., Wang, H.J., Yang, S., Kong, C., Sun, P., Wu,
W., Zhang, Y.: Secondnet: a data center network virtualization
architecture with bandwidth guarantees. In: Proceedings of
ACM CoNEXT (2010)

 27. Coffmann, E.G., Gary, M.R., Johnson, D.S.: Approximation
algorithms for bin-packing-an updated survey. Algorithm
Design for Computer System Design, pp. 49–106 (1984)

 28. Mishra, M., Sahoo, A.: On theory of vm placement: anomalies
in existing methodologies and their mitigation using a novel
vector based approach. In: Cloud Computing (CLOUD), 2011
IEEE International Conference on, pp. 275–282. IEEE (2011)

 29. Xu, J., Fortes, J.A.: Multi-objective virtual machine placement
in virtualized data center environments. In: Green Comput-
ing and Communications (GreenCom), 2010 IEEE/ACM Int’l
Conference on and Int’l Conference on Cyber, Physical and
Social Computing (CPSCom), pp. 179–188. IEEE (2010)

 30. Piao, J.T., Yan, J.: A network-aware virtual machine placement
and migration approach in cloud computing. In: Proceedings
of Grid and Cooperative Computing (GCC 2010), pp. 87–92
(2010). doi:10.1109/GCC.2010.29

 31. Yapicioglu, T., Oktug, S.: A traffic-aware virtual machine
placement method for cloud data centers. In: Proceedings of
the 2013 IEEE/ACM 6th international conference on utility
and cloud computing, pp. 299–301. IEEE Computer Society
(2013)

 32. Chaisiri, S., Lee, B.S., Niyato, D.: Optimal virtual machine
placement across multiple cloud providers. In: Services Com-
puting Conference, 2009. APSCC 2009. IEEE Asia-Pacific, pp.
103–110. IEEE (2009)

 33. Hao, F., Kodialam, M., Lakshman, T.V., Mukherjee, S.: Online
allocation of virtual machines in a distributed cloud. In: IEEE
INFOCOM 2014—IEEE Conference on Computer Communica-
tions, pp. 10–18 (2014). doi:10.1109/INFOCOM.2014.6847919

 T. Guo et al.

1 3

 34. Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P.,
Ding, H., Ferris, J., Giardullo, A., Kulkarni, S., Li, H., et al.:
Tao: Facebooks distributed data store for the social graph. In:
Presented as part of the 2013 USENIX Annual Technical Con-
ference (USENIX ATC 13), pp. 49–60 (2013)

 35. Chen, K.y., Xu, Y., Xi, K., Chao, H.J.: Intelligent virtual machine
placement for cost efficiency in geo-distributed cloud systems.
In: 2013 IEEE International Conference on Communications
(ICC), pp. 3498–3503. IEEE (2013)

 36. Project Voldemort. http://project-voldemort.com/
 37. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional stor-

age for geo-replicated systems. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, pp.
385–400. ACM (2011)

 38. Steiner, M., Gaglianello, B.G., Gurbani, V., Hilt, V., Roome, W.,
Scharf, M., Voith, T.: Network-aware service placement in a dis-
tributed cloud environment. In: Proceedings of the ACM SIG-
COMM (2012)

 39. Alicherry, M., Lakshman, T.V.: Network aware resource alloca-
tion in distributed clouds. In: INFOCOM (2012)

 40. Guo, T., Sharma, U., Shenoy, P., Wood, T., Sahu, S.: Cost-aware
cloud bursting for enterprise applications. ACM Trans. Internet
Technol. 13(3), 10 (2014)

 41. Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource pro-
visioning cost in cloud computing. IEEE Trans. Serv. Comput.
5(2), 164–177 (2012)

 42. Guo, T., Sharma, U., Wood, T., Sahu, S., Shenoy, P.: Seagull:
intelligent cloud bursting for enterprise applications. In: Pro-
ceedings of USENIX Annual Technical Conference (2012)

 43. Calyam, P., Rajagopalan, S., Selvadhurai, A., Mohan, S., Venka-
taraman, A., Berryman, A., Ramnath, R.: Leveraging openflow
for resource placement of virtual desktop cloud applications. In:
2013 IFIP/IEEE International Symposium on Integrated Net-
work Management (IM 2013), pp. 311–319. IEEE (2013)

 44. Lai, A.M., Nieh, J.: On the performance of wide-area thin-client
computing. ACM Trans. Comput. Syst. 24(2), 175–209 (2006).
doi:10.1145/1132026.1132029

 45. Abe, Y.: Liberating virtual machines from physical boundaries
through execution knowledge (2015)

 46. Hiltunen, M., Joshi, K., Schlichting, R., Yamada, N., Moritsu, T.:
CloudTops: Latency aware placement of Virtual Desktops insti-
tution Distributed Cloud Infrastructures (2013)

 47. Lagar-Cavilla, H.A., Tolia, N., De Lara, E., Satyanarayanan, M.,
OHallaron, D.: Interactive resource-intensive applications made

easy. In: ACM/IFIP/USENIX International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing, pp.
143–163. Springer (2007)

 48. Lagar-Cavilla, H.A., Whitney, J.A., Scannell, A.M., Patchin, P.,
Rumble, S.M., De Lara, E., Brudno, M., Satyanarayanan, M.:
Snowflock: rapid virtual machine cloning for cloud computing.
In: Proceedings of the 4th ACM European conference on Com-
puter systems, pp. 1–12. ACM (2009)

 49. Nelson, M., Lim, B.H., Hutchins, G.: Fast transparent migration
for virtual machines. In: Proceedings of the annual conference on
USENIX Annual Technical Conference (2005)

 50. Breitgand, D., Kutiel, G., Raz, D.: Cost-aware live migration of
services in the cloud. In: Proceedings of Annual Haifa Experi-
mental Systems Conference (2010)

 51. Ibrahim, K.Z., Hofmeyr, S., Iancu, C., Roman, E.: Optimized
pre-copy live migration for memory intensive applications. In:
Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, p. 40.
ACM (2011)

 52. Jin, H., Deng, L., Wu, S., Shi, X., Pan, X.: Live virtual machine
migration with adaptive, memory compression. In: CLUS-
TER’09, pp. 1–10 (2009)

 53. Nathan, S., Bellur, U., Kulkarni, P.: Towards a comprehensive
performance model of virtual machine live migration. In: Pro-
ceedings of the Sixth ACM Symposium on Cloud Computing,
pp. 288–301. ACM (2015)

 54. Hou, K.Y., Shin, K.G., Sung, J.L.: Application-assisted live
migration of virtual machines with java applications. In: Pro-
ceedings of the Tenth European Conference on Computer Sys-
tems, p. 15. ACM (2015)

 55. Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live
wide-area migration of virtual machines including local persis-
tent state. In: Proceedings of ACM SIGPLAN/SIGOPS confer-
ence on Virtual Execution Environments (VEE) (2007)

 56. Hirofuchi, T., Ogawa, H., Nakada, H., Itoh, S., Sekiguchi, S.: A
live storage migration mechanism over wan for relocatable vir-
tual machine services on clouds. In: Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and
the Grid, pp. 460–465. IEEE Computer Society (2009)

 57. Harney, E., Goasguen, S., Martin, J., Murphy, M., Westall, M.:
The efficacy of live virtual machine migrations over the internet.
In: Proceedings of VTDC (2007)

