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Abstract—Enterprises that host services in the cloud need to
protect their cloud resources using network services such as
firewalls and deep packet inspection systems. While middleboxes
have typically been used to implement such network functions in
traditional enterprise networks, their use in cloud environments
by cloud tenants is problematic due to the boundary between
cloud providers and cloud tenants. Instead we argue that network
function virtualization is a natural fit in cloud environments,
where the cloud provider can implement Network Functions as
a Service using virtualized network functions running on cloud
servers, and enterprise cloud tenants can employ these services
to implement security and performance optimizations for their
cloud resources. In this paper, we focus on placement issues in the
design of a NFaaS cloud and present two placement strategies—
tenant-centric and service-centric—for deploying virtualized net-
work services in multi-tenant settings. We discuss several trade-
offs of these two strategies. We implement a prototype NFaaS
testbed and conduct a series of experiments to quantify the
benefits and drawbacks of our two strategies. Our results suggest
that the tenant-centric placement provides lower latencies while
service-centric approach is more flexible for reconfiguration and
capacity scaling.

I. INTRODUCTION

Traditionally enterprises have used middleboxes to imple-

ment various security and performance functions in their en-

terprise networks. These network functions include firewalls,

deep packet inspection systems, and proxy caches among

others.

As enterprise networks have become more dynamic in their

needs, the use of specialized hardware middleboxes to imple-

ment network functions has become a drawback rather than

a benefit. Network function virtualization (NFV) has emerged

as a potential solution to enable enterprises to flexibly deploy

and reconfigure network functions on-demand to handle the

network’s dynamic, scalability and security needs.

At the same time, enterprises have begun to move back-

end applications from in-house data centers to the cloud.

The cloud’s pay-as-you-go model and on-demand resource

allocation abilities are attractive to enterprises for hosting

their application in a more cost-effective fashion while also

handling workload dynamics. Indeed many new enterprises are

entirely cloud based where their entire IT infrastructure—both

internal and external facing applications—are cloud based.

In such scenarios, an enterprise needs to implement network

security and performance functions in the cloud to guard

their cloud-based servers—in order to implement the same

network security and performance policies they would have

implemented in their enterprise network. Since deploying or

leasing middleboxes in a public cloud is not always possible,

the use of NFV to implement these functions using commodity

cloud servers is an attractive option.

In many cases, the cloud providers may themselves offer

network functions as a service (NFaaS) to cloud-based en-

terprises so that they can lease storage and servers as well

as appropriate network services to configure and guard their

resources.

Motivated by such scenarios, in this paper, we study the

design of a NFaaS cloud. Specifically we assume that a NFaaS

cloud provides different network functions (e.g., firewall, in-

trusion detection system (IDS), caching, etc) that can be leased

by a cloud-based enterprise for their cloud IT infrastructure.

We specifically examine how a cloud provider should design

a multi-function multi-tenant NFaaS cloud from the placement

perspective. We propose two different placement strategies for

a multi-tenant NFaaS cloud and discuss the advantages and

disadvantages of each approach. We conduct an experimental

evaluation of these approaches using a small prototype NFaaS

cloud and quantify their benefits and overheads. We believe

that our insights can provide design guidelines on the place-

ment of virtualized network functions in future NFaaS clouds.

II. BACKGROUND AND RELATED WORK

In this section, we present background on cloud computing

and network function virtualization.

A. Cloud Computing Background

We consider an enterprise that hosts its IT needs using cloud

resources. The enterprise is assumed to acquire servers and

storage resources from an Infrastructure-as-a-Service (IaaS)

cloud to run its applications on this cloud-based infrastructure.

Such a cloud-based IT infrastructure needs to incorporate

network security policies and performance optimization—like

an in-house enterprise network. That is, network traffic coming
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into the enterprise’s cloud servers needs to undergo security

checks (e.g., using firewalls, deep packet inspection systems,

virus scanners, etc.) and may be subject to performance

optimization (e.g., using in-network caches).

Traditionally such features have been implemented using

middleboxes—dedicated hardware devices that are deployed

in the network—to perform these functions.

In a cloud-based setting, we assume that the infrastructure

cloud provider provides these functions as cloud services—

allowing the enterprise to lease firewalls, caches, etc. similar to

leasing servers and storage. We assume that the cloud provider

supports a rich mix of network services that may be needed by

an enterprise. The same benefit as infrastructure clouds hold

in this case such as the pay as you go model, the ability to

scale up service capacity, and on-demand resource allocation.

B. Network Function Virtualization

While the cloud provider can provide cloud-based network

services by deploying middleboxes on behalf of cloud custom,

it is more effective to use network function virtualization to

implement these services using commodity servers.

In this case, a service such as a firewall, IDS or a cache

is implemented as software that runs inside a virtual machine

and the VM runs on commodity servers. Virtualizing network

functions has become popular since it offers a number of

benefits over the middlebox approach – such as reducing

capital cost, shortening deployment cycles and the ability to

handle the needs of a dynamic network.

In our scenario, NFV is a natural fit since the cloud provider

is already leasing servers and can use these commodity servers

to deploy virtualized functions and offer the network functions

as a service (NFaaS) to customers.

A customer can lease various network functions as cloud

services and chain them together to implement the desired

network security policies and performance optimization. For

instance, the customer (i.e., the enterprise) could lease a

firewall service, an IDS service, a DNS service, a cache service

and configure them so that network traffic flow through them

transparently.

III. PLACEMENT ISSUES IN A NFAAS CLOUD

Many design issues arise in deploying a NFaaS cloud. In this

paper, we specifically focus on placement issues in a multi-

tenant NFaaS cloud, which we discuss next.

A. Placement Strategies

A cloud provider can employ one of two placement strate-

gies in a multi-function multi-tenant NFaaS cloud: tenant-

centric and service-centric.

In a tenant-centric approach, VMs comprising all network

services leased by a tenant are mapped onto a single server

or a group of co-located servers (e.g., servers on the same

network rack). Fig 1(a) shows tenant-centric placement for

three different tenants, each of whom is using three different

network services. While the figure shows all services reside on
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(a) Tenant-centric Placement.
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(b) Service-centric Placement.

Fig. 1. Two placement strategies of deploying network functions in a multi-
tenant NFaaS cloud

a single server, higher capacity services may require multiple

servers that are co-located.

In contrast, a service-centric placement approach maps VMs

running the same service for different tenants on the same

server or on a co-located group of servers. Fig 1(b) which

depicts this approach shows that each server (or rack(s))

hosting the same service.

B. Tradeoffs

The two placement strategies offer a number of tradeoffs –

both from a cloud provider’s and a cloud tenant’s perspective.

Network latency: The primary advantage of customer-

centric service placement is that it optimizes the network

latency of packets as they traverse from one network function

to the next (e.g., from firewall to IDS). Since the services

belonging to a tenant reside on the same server or the same

rack, network latency is minimized. In the service-centric

placement approach, services belonging to a tenant may reside

on different racks, requiring packets to traverse to multiple

switches when going from one service to the next.

Flexibility and Scaling: In many scenarios, existing network

functions might need to be updated. For example, a tenant may

want to implement new network functions in their network, or

may choose to replace one IDS with another. In scenarios

where a tenant’s network traffic is increasing, the resource

allocated to a NF may have to be scaled up (“elastic scaling”).

In a tenant-centric approach, such reconfiguration require free

resources on the server or rack hosting the tenant’s current

services. If such idle capacity is unavailable, either other tenant

have to be moved to other servers/racks to free up resources

or the new service has to be placed on a more “distant” server,

diminishing the latency advantage of the approach. A service-

centric approach does not suffer from such a drawback, since

new services (or resizing of existing ones) can be achieved by

choosing any server with sufficient capacity without regard to

network proximity.

Packing and Resource Utilization: A tenant-centric ap-

proach enables hosting of heterogeneous services on the same

server. This enable a CPU-intensive (but less I/O intensive)
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service to be co-located with an I/O-intensive (but less CPU-

intensive) one, yielding better utilization of various resources

of potentially a denser packing—a strategy that has been

successfully employed in general-purpose VM placement.

A service-centric approach hosts homogeneous services (be-

longing to different tenants) on a server of packing density is

determined by the most bottlenecked resources of each service.

However, homogeneity of services is not without advantage.

Since all service on a server run the same code, it provides

opportunities for better memory and cache utilization (e.g.,

page cache sharing across services). It may also be possible

to employ containers (lightweight VMs) rather than VMs to

further exploit this homogeneity.

Performance Interference: Whenever multiple services re-

side on a physical server, there is the potential for performance

interference. In the service-centric case, such interference will

be cross-tenant, while in the tenant-centric case, the interfer-

ence will be cross-service interference. Fortunately, resource

partitioning features of VMs (or containers) can isolate co-

resident services and minimize the impact of such interference.

In summary, whether to user tenant-based or service-based

placement depends on the cloud provider’s objective – tenant-

based deployment has better latency, potentially better packing

but less flexibility for reconfigurations, capacity scaling than

a service-based approach and vice versa.

IV. EXPERIMENTAL EVALUATION

In this section, we quantify the benefits and overheads of

the two placement strategies using an experimental evaluation.

Since the space is limited, here we only provide some of our

experimental results. More evaluation can be found in our

technical report [10]

A. Prototype NFaaS Cloud

We have built a prototype NFaaS cloud using several open-

source components. Our prototype provides three network

services: (i) a network firewall that is implemented using Linux

IPtables, (ii) an intrusion detection system that is implemented

using Snort 2.9.8.2 [1], and (iii) an in-network web cache that

is implemented using Squid 3.3.8 [2]. All three components are

popular and widely-used system that we deploy as virtualized

services inside virtual machines. The use of virtualization

enables benefits such as rapid deployment, flexible placement

and flexible resizing when needed. Further, we implement

both tenant-centric and service-centric placement in our NFaaS

prototype. In both cases, we use Linux bridging to enable a

tenant to “chain” network functions as per their needs (see

Figure 2). We do so by appropriately configuring routing tables

on each VM. In tenant-centric placement, services belonging

to a cloud tenant are placed on the same server when possible

(or on nearby servers when VMs are too large to pack onto

a single server). In service-centric placement, VMs belonging

to a service are packed together for co-location.

B. Experimental Setup

We deployed our NFaaS prototype on a testbed of five

physical server as shown in Figure 2. Each server has an Intel

Xeon X3430 2.4GHz Quad-Core CPU, two gigabit physical

NICs, 8 GB of RAM and 1TB 7200 RPM disk. All machines

run Ubuntu 12.04 and use KVM as a virtual machine (VM)

hypervisor. We use one server to house clients and one to

house web servers belonging to tenants. The other three servers

run virtualized network functions inside VMs. Each VM is

pinned to a physical CPU core with 2048 MB RAM allocated.

We also create two virtual NICs that allow network traffics

to traverse from one NIC to the other. Client HTTP traffic

is generated using httperf [3] on one server, and this traffic

traverses through a tenant’s three network services before

reaching the web server. We monitor and measure resource

utilization of various VMs using the dstat [4] tool.

We configure the iptables firewall with 1000 rules and

configure Snort 2.9.8.2 with their default rule set. Finally, we

configure Squid 3.3.8 to cache frequently accessed web pages.

In tenant-based deployment, each physical server contains

three VMs belonging to a tenant running different network

functions connected as a chain through Linux bridges as

illustrated in Figure 1(a). In service-based deployment, each

physical server contains three VMs running the same network

function belonging to different tenants as illustrated in Fig-

ure 1(b).

C. Network Function Micro Benchmark

We first configure our network service based on Figure 2 in

which each network runs inside its own VM. Client VMs are

instructed to contact the web server, at a specified workload

intensity, to get a 50 KB web page for 1 minute. All HTTP

traffic traverses through these three NFs, and we measure the

average resource utilization of NFs on their corresponding

VMs. As we increase network traffic, from 100 to 500 connec-

tions per second, the CPU utilization of all network functions

increase linearly as shown in Figure 3. Specifically, the web

proxy is more sensitive to increasing network traffic than the

firewall and IDS, with up to 60% more CPU consumption.

The network utilization also grows directly with increasing

network traffic. In addition, we find the disk and memory

utilization vary only slightly with increasing network traffic.

This is because the memory state of the firewall and IDs

depend on factors such as the size of the rules set and not

on the workload. Also, while the cache size depends directly

on the number of frequently accessed pages, it is not strongly

related to the request rate. We thus omit these measurement

results but use them in our simulation (see Table I).

Result: The CPU and network utilization of our services

increase nearly linearly with the workload while memory and

disk utilization are less sensitive to the request rate.

D. Virtualization Overhead

As shown in IV-C, NFs are heavily CPU and network

consuming. In this experiment, we measure underlying hy-

pervisor’s CPU and network utilization for both placement

approaches. We set up bare-bone VMs for tenant-based and

service-based respectively as shown in Figure 1. The network
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traffic of each tenant is configured to be the same for both ap-

proaches. We instrument the hypervisors in both tenant-based

and service-based deployments to measure the utilization.

In Figure 4(a), we show that the NIC bandwidth consumed

by tenant-based deployment is only 1/3 of that consumed

by service-based deployment. This is because in tenant-based

approach, traffic between network functions goes through

internal bridges within a physical server’s boundary while

in service-based approach, the traffic goes between physi-

cal servers through physical NICs. This makes tenant-based

approach much more bandwidth efficient than service-based

approach. However, this bandwidth saving is not acquired

for free. From Figure 4(a), we can see that although NIC

throughput of service-based approach is three time than that

of tenant-based, the CPU utilization of service-based approach

is only slightly higher. This is because forwarding packets

through internal bridges in tenant-based approach is CPU

consuming and brings overhead for the hypervisor.

Conclusion: Tenant-based deployment is less NIC band-

width consuming than tenant-based deployment because pack-

ets go through internal bridges between network functions.

Both tenant-based and service-based deployment incur non

negligible hypervisor CPU overhead that increases linearly

with network traffics. Specifically, to achieve the same through-

put for each tenant, service-based deployment requires much

more network bandwidth and slightly more CPU resources

than service-based deployment.

E. Packing Efficiency

Next, we compare the packing efficiency of the tenant-

based and service-based approaches. The packing efficiency

is measured as the number of servers required to handle the

same workload level—that is, we simulate different scenarios
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Fig. 4. Hypervisor CPU and Network utilization of the two deployments.

in which NFaaS customers request different resources for their

network functions. Specifically, we divide NFaaS customers

into three groups, i.e., small, medium and large, based on

their resource requirements. In Table I, we list resource

requirements of different customers in the form of CPU and

Memory. These requirement values are taken directly from

our micro benchmarks and correspond to NFs handling 300,

600 and 1200 connections per second respectively. In addition,

the NFaaS cloud is simulated with four different types of

physical servers and we show the corresponding configurations

in Table II. Finally, we choose to use best fit algorithm that

places all network functions of next customer to eligible

servers with smallest amount of available CPU cores, for both

deployment modes. Here a server is eligible only if it has

enough available CPU and memory capacity.

We first look at the total number of small physical servers

required to place large-sized customers. As shown in Fig-

ure 5(a), deploying NFs service-basedly can save up to 30%

server resources compared to tenant-based deployment. In
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NFaaS Customer Type Firewall IDS Web Proxy
Small (0.1, 71) (0.1, 462) (0.5,147)

Medium (0.2, 71) (0.2, 470) (1, 151)
Large (0.4, 71) (0.4, 485) (2, 160)

TABLE I
NFAAS CUSTOMER CONFIGURATION FOR SIMULATIONS.

RESOURCE REQUIREMENTS ARE SPECIFIED IN THE FORM OF

NUMBER OF CPU CORES AND MEMORY (MB).

Server Type Cores Memory (GB)
Small 4 8

Medium 6 12
Large 8 16

Xlarge 12 24

TABLE II
SERVER CONFIGURATIONS FOR OUR SIMULATIONS.

essence, service-based deployment outperforms tenant-based

deployment because it has more eligible servers to choose

from during each placement decision. For example, any phys-

ical server with less than 1.4 CPU cores is not eligible for

tenant-based deployment.

Next we compare the number of large servers required

to host a thousand customers with different resource re-

quirements. We observe that the benefits of service-based

deployment over tenant-based deployment increase from 3%

to 30% when we need to handle customers with more resource

demands. Similarly, this is because a larger customer leads to

more potential waste of spare server resources.

Finally, we total the number of servers required to run NFs

for one thousands customers of varying resource requirements.

In Figure 5(c), we show that tenant-based placement per-

forms worse when only has access to small servers with

limited resources. As we increase the server size, the difference

between tenant-based and service-based placements converges.

This is because having access to larger servers offsets the

resource constraints exerted by tenant-based placement.

Result: The service-centric approach has higher packing

efficiency than a tenant-centric deployment, with up to 30%

fewer physical servers. In particular, tenant-based approach

has poor packing efficiency when placing customers with

higher resource demands or on to smaller servers.

F. End-to-end Performance

In this experiment, we evaluate the end-to-end response

time and bandwidth of deploying a network service using

either tenant-centric or service-centric placement. We create a

logical topology where user generated requests have to traverse

firewall, IDS and then web proxy in sequence. Similar to

Figure 1, for the tenant-centric approach, we place all three

services on the same quad-core server, while for the service-

centric approach, we place these services on three different

servers.

For each physical topology, either tenant-based or service-

based, we begin the experiment by sending HTTP requests

to fetch web pages from the web server. Specifically, we
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Fig. 6. Comparison of response time. Tenant-based deployment can achieve
up to 20% improvement comparing to service-based deployment when all
network functions run in the same rack.

limit the request rate to 100 connections per second to avoid

bandwidth congestion and make sure that all user requests

go through all three middleboxes. We run each experiment

for one minute and measure the average response time over

all requests. As shown in Figure 6, tenant-centric placement

incurs up to 20% lower latency, for both web page sizes,

under similar server load. The response time difference is

because packets traversing through multiple physical servers

in the service-centric placement. We expect to observe an

even higher performance gap if middleboxes were running in

different racks for service-based deployment.

Next, we use the same physical topologies and measure

the maximum throughput for topologies. We use iperf to

generate TCP traffic and measure the end-to-end throughput

during steady state. We observe that tenant-based deployment

can support up to 942 Mbps when using a dedicated phys-

ical server with 1Gbps NICs. This is because tenant-based

deployment has full access to physical NICs. However, we

only observe around 310 Mbps throughput in service-based

deployment. The low throughput in mainly due to the traffic

having to traverse through multiple physical NICs that are

shared with multiple tenants. In this case, the 1Gbps network

interfaces on each server are shared among three cloud tenants.

Result: Deploying network functions using a tenant-centric

approach can lead to better end-to-end response time and

higher throughput than the service-centric approach.

V. RELATED WORK

The promise of implementing software-based network func-

tions and running them on commodity high-volume servers has

attracted significant attention from the research community [8].

In NFV, individual network functions are implemented in soft-

ware and use virtualization to replace its hardware counterpart.

Efforts to improve packet processing performance using com-

modity NICs [5], [16] and packet transfers in the virtualized

environments [17], [11] have significantly improve the perfor-

mance of running virtualized NFs in the commodity settings.

Almost always, NFs are used in combination to form network

services and these end-to-end services introduce new problems

in managing the end-to-end performance [13], [18], [15], [9],

especially in the multi-tenant cloud environments [19], [6].
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Fig. 5. Comparison of packing efficiency for tenant-based and service-based deployment under different scenarios.

Unlike traditional VM placement [7], [12], [14] where the VM

resource needs may not be known in advance, in our case, the

characteristics of each network function is known in advance,

enabling more optimal placement.

VI. CONCLUSIONS

In this paper, we studied how network functions as a

service can be deployed in cloud environments. We studied

two different placement strategies, tenant-centric and service-

centric, for deploying network functions in the cloud. Our

experimental evaluation using a NFaaS prototype and simu-

lations show that tenant-centric placement can achieve better

network performance because it avoids cross-service traffic

from traversing network switches, which saves physical band-

width and reduces network delay. In contrast, the service-

centric approach is easier to manage and deploy; simulations

using real measurements show that this approach yields better

resource utilization in the cloud. Our results demonstrate the

tradeoffs of the two approaches and provide guidance on which

approach to choose based on the overall design goals.
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