
DRAB-LOCUS: An Area-Efficient AES
Architecture for Hardware Accelerator Co-Location

on FPGAs
Jacob T. Grycel

Email: jtgrycel@wpi.edu
Worcester Polytechnic Institute

Department of Computer Science
Worcester, MA

Robert J. Walls
Email: rjwalls@wpi.edu

Worcester Polytechnic Institute
Department of Computer Science

Worcester, MA

Abstract—Advanced Encryption Standard (AES) implementa-
tions on Field Programmable Gate Arrays (FPGA) commonly
focus on maximizing throughput at the cost of utilizing high
volumes of FPGA slice logic. High resource usage limits systems’
abilities to implement other functions (such as video processing
or machine learning) that may want to share the same FPGA
resources. In this paper, we address the shared resource challenge
by proposing and evaluating a low-area, but high-throughput,
AES architecture. In contrast to existing work, our DSP/RAM-
Based Low-CLB Usage (DRAB-LOCUS) architecture leverages
block RAM tiles and Digital Signal Processing (DSP) slices to
implement the AES Sub Bytes, Mix Columns, and Add Round
Key sub-round transformations, reducing resource usage by
a factor of 3 over traditional approaches. To achieve area-
efficiency, we built an inner-pipelined architecture using the
internal registers of block RAM tiles and DSP slices. Our DRAB-
LOCUS architecture features a 12-stage pipeline capable of
producing 7.055 Gbps of interleaved encrypted or decrypted data,
and only uses 909 Look Up tables, 593 Flip Flops, 16 block RAMs,
and 18 DSP slices in the target device.

I. INTRODUCTION

As the Advanced Encryption Standard (AES) lies at the core
of many important security operations—ranging from securing
network connections to full disk encryption—improvements to
performance and efficiency can benefit a large and diverse set
of systems. One means to achieve this performance increase
is through the use of hardware acceleration. For instance, a
number of studies have leveraged field programmable gate
arrays (FPGAs) for accelerating AES [1]. While these FPGA-
based AES architectures achieve high throughput, they typi-
cally do so at the cost of high resource usage on the FPGA,
i.e., monopolizing large quantities of components such as flip
flops and look up tables. While higher throughput is valuable,
we argue in this paper that area-efficiency is often an equally
important design goal for AES architectures.

Area-efficiency, intuitively, is a measure of how effectively
an architecture capitalizes on the FPGA’s resources. The key
challenge is not only making effective use of under-utilized
components (such as digital signal processing slices), but
understanding the device layout and incorporating that knowl-
edge into the design. However, the potential payoff is great

as area-efficient designs offer substantial benefits over those
focusing purely on throughput. Most notably, area-efficiency
opens up possibilities for using hardware-accelerated security
in new domains. A variety of embedded systems simply
cannot implement strong, efficient encryption due to pro-
cessor limitations or other constraints (e.g., power)—FPGA-
based approaches are a promising way to overcome these
challenges. Indeed, manufacturers now release cheap system-
on-a-chip (SoC) platforms that feature co-located FPGAs
and CPUs. However, without area-efficient AES designs, the
system developer may have to choose between security and
other operations that benefit from hardware acceleration, such
as deep learning [2], [3] or video processing [4]. An area-
efficient AES architecture would allow other types of hardware
acceleration to run concurrently on the same FPGA.

In this paper, we propose a novel AES architecture that
considers resource-efficiency as a first-order design principle,
balancing resource usage and throughput. Key to our design is
the use of block RAM and digital signal processing slices—
resources that are largely under-utilized by prior works [1]—
to efficiently implement the AES sub-round transformations
without the need for large numbers of logic slices. The
DSP/RAM-Based Low-CLB Usage (DRAB-LOCUS) archi-
tecture offers several advantages over existing approaches,
including: (i) high throughput (7.055 Gbps) on cheaper hard-
ware; (ii) more efficient use of FPGA resources which reduces
logic slice utilization in systems that require high volumes of
flip flops and look up tables; (iii) more functionality, allowing
for concurrent encryption and decryption on multiple blocks.

II. AREA-EFFICIENT DESIGN

The DRAB-LOCUS AES architecture utilizes a mixture of
slice logic, block RAM (BRAM), and digital signal processing
slices (DSP slices) to perform encryption and decryption on
concurrent blocks of data. This design consists of three main
components: Datapath, Controller, and Key Schedule. A more
detailed description of DRAB-LOCUS can be found in the
extended version of this paper [5].



A. Datapath Architecture

The DRAB-LOCUS datapath implements an iterative,
inner-pipelined realization of the AES round transformations.
Where possible, transformations occur in block RAM (BRAM)
and digital signal processing (DSP) slices to effectively use all
available FPGA resources within the physical bounds of the
circuit. For example, the datapath contains 4 and 8 BRAM
lookup tables for the sub bytes and mix columns transforma-
tions, as opposed to utilizing lookup tables (LUTs) and flip
flops, which may result in high fanout nets that struggle to
meet timing constraints. Furthermore, the add round key and
mix columns transformations use cascaded DSP slice inputs
and outputs to perform large XORs. The only transformation
not mapped to BRAM or DSP slices is shift rows, which we
implement as a large multiplexer in slice logic that selects
between row mappings for encryption and decryption.

We add register stages to the datapath pipeline by enabling
additional output registers on BRAM and a combination of
input/output registers on DSP slices. While two sets of flip
flops are used to acquire register stages for shift rows and
mix columns, all other stages come at no extra cost in FPGA
resources; in total, the datapath contains 12 register stages.
DRAB-LOCUS connects the AES transformations in the
classic order used for encryption: sub bytes, shift rows, mix
columns, add round key. The architecture uses this datapath
for both encryption and decryption by employing the AES
equivalent inverse cipher [6], which uses the same order of
operations for decryption but with a modified key schedule.

The datapath supports continuous operation of the trans-
formations, allowing any block to be repeatedly processed
for either encryption or decryption without any stall cycles
required to insert new data or perform final round transforma-
tions. DRAB-LOCUS achieves this continuous operation by
instantiating two extra copies of the add round key transfor-
mation to handle initial and final round key additions without
disturbing blocks in the datapath.

To support decryption, the key schedule runs all derived
round keys through the mix columns transformation in de-
cryption mode to obtain inverse keys. To avoid high fanout
from the controller to select between the key schedule and
shift rows inputs to mix columns, the two inputs are OR’ed
together before mix columns. Then during key initialization
the controller holds shift rows in reset using dedicated reset
paths, and during cipher operation the key schedule resets
the registers used in initialization. While this arbitration still
requires controller intervention, it is faster than using logic
slice routing. A similar technique is applied to sub bytes to
select between the key schedule and add round key instances.

B. Control Module and Key Schedule

Control Module: The DRAB-LOCUS controller tracks the
progress of each block in the pipeline by counting the number
of completed rounds and specifying the correct mode (encryp-
tion/decryption) for each datapath transformation. Since the
datapath contains 12 register stages, and performs 10 rounds

of transformations for 128-bit security, each full process takes
115 clock cycles (this is 5 less than 120 due to omission of
mix columns in the final round). We achieve this functionality
using a two-part controller: An array of shift registers, and a
finite state machine (FSM).

The array consists of two types of shift registers. The first
type tracks which process (encryption or decryption) should
be used in each transformation, and is implemented using
a cascade of flip flops. Registers of the second type count
how long each data block has been processed, and indicates
when processing is complete. These registers are 115 bits long
to represent each clock cycle in a full encryption/decryption
process. Since only the final bit is used to determine when
processing is complete, they are implemented using LUTs
in SRL32E configuration as opposed to a chain of 115 flip
flops and LUTs. This style is also more efficient than using
traditional counters, which would require 7 flip flop/LUT pairs
to achieve the same function. By using SRL32E configuration,
each register takes only 4 LUTs. To track all possible data
blocks in the pipeline we use 12 of these shift registers.

The FSM-part of the controller handles flushing and inter-
pretation of the shift register array. With 12 blocks of data in
the pipeline at a given time, each going through encryption
or decryption concurrently, the cipher state is too complicated
to describe discretely with an FSM. The shift register array
informs the FSM of whether each block is finished, and
whether there is space available in the pipeline.

Key Schedule: The key schedule utilizes an FSM to control
the computation of round keys using internal registers and
connections to the sub bytes and mix columns instances. The
FSM iteratively computes round keys and inverse round keys
for the equivalent inverse cipher so that the key for any round
is available on request. This is necessary since any block in
the pipeline can be in any round. We use BRAM to store all
of the computed keys, and use 12 counters to keep track of
which round key is needed for each block in the datapath.

Due to having three instances of the add round key transfor-
mation, it is possible for the datapath to need the initial, final,
and an arbitrary round key at the same time. We solve this
challenge by using one BRAM port to produce an arbitrary
round key, another port to always produce the final round
key, and by adding a 128-bit register to hold the initial round
key. This register, and two other 128-bit registers that hold
intermediate keys during initialization, make the key schedule
have the highest logic slice usage in the entire architecture.

III. IMPLEMENTATION

We synthesized and implemented the DRAB-LOCUS ar-
chitecture using a Zynq 7000 SoC featuring co-located ARM
processors and an Artix-7 grade FPGA (xc7z030sbg485-3).
As a result of our focus on using BRAM and DSP slices for
area-efficiency, the entire implementation fits in one half of a
clock region. This uses less power because the FPGA routes
clocks to only one section of the device.

In addition to fitting within a single clock region, all of the
logic elements are contained within two columns of BRAM



tiles. This compact layout allows DRAB-LOCUS to run
at the maximum frequency supported by BRAM. This is
because there is less physical distance between components
and, therefore, less delay on the critical path.

In total, the DRAB-LOCUS architecture uses only 909
LUTs, 593 flip flops, 16 BRAM, and 18 DSP in the target
FPGA. The AES sub-round transformations use only 266
LUTs and 256 flip flops, less than half of architecture’s total
slice utilization. It runs on a 528 MHz clock, producing 7.055
Gbps of interleaved encrypted and decrypted data when the
pipeline is full, and has a latency of 217 ns (115 clock cycles)
for a single block to finish encryption or decryption.

IV. EVALUATION

Our evaluation focuses on answering the following key
questions. (i) How does DRAB-LOCUS compare to other
FPGA-based AES architectures? Specifically, what is the
impact of different architectural decisions on throughput,
resource usage, and functionality? (ii) How efficiently does
DRAB-LOCUS use its allocated resources? How do we
evaluate efficiency for AES designs in general? (iii) How does
the use of non-logic-slice resources affect power consumption?

We evaluate DRAB-LOCUS by comparing to another
AES architecture designed for area efficiency, which we call
Drimer-AES, designed by Drimer et al. [7]. There are many
AES designs, such as the design by Wang and Ha that achieves
a high throughput of 78.22 Gbps at the expense of high
resource usage [8], or the design by de la Piedra et al.
which uses minimal slice logic but has a low throughput of
124 Mbps [9]. However, there are few that utilize all FPGA
primitives and aim for area efficiency. The resource usage
and performance of the DRAB-LOCUS and Drimer-AES
architectures is shown in Table I. The numbers presented
for Drimer-AES come from the original publication, as we
did not build an implementation due to ambiguities in the
controller and key schedule. In the extended version of this
study we discuss an implementation of DRAB-LOCUS on a
Virtex 5 device. Refer to the extended paper for details on this
additional implementation [5].

A. Architectural Effects on Performance

DRAB-LOCUS and Drimer-AES use similar iterative
inner-pipelined architectures, but with Drimer-AES using 72
more LUTs, 368 more flip flops, and 4 less BRAM. This
difference in BRAM comes mainly from the design decisions
that enable DRAB-LOCUS to perform both encryption and
decryption concurrently on 12 blocks of data. Drimer-AES
implements the round using T-Boxes, which combine the sub
bytes and mix columns sub-round transformations into a single
look up and XOR operation [10]. However, this technique
utilizes an entire 36 kilobit BRAM to store lookup values for
encryption. With a single copy of the round datapath, this
approach prevents Drimer-AES from supporting concurrent
encryption and decryption.

By keeping the sub bytes and mix columns sub-round
transformations separate, DRAB-LOCUS is able to perform

both encryption and decryption at the expense of using 4
more BRAM. This technique increases the latency of DRAB-
LOCUS by two extra delay cycles for the sub bytes sub-
round transformation, but also increases the capacity of the
datapath to operate on two more blocks of data than if
the design used T-boxes. Even with extra latency, DRAB-
LOCUS maintains higher throughput than Drimer-AES, and
supports both encryption and decryption.

The DRAB-LOCUS key schedule was also designed to
be able to provide any round key at any time, in order to
support encryption and decryption for 12 concurrent blocks in
the datapath. In order to achieve this, the key schedule utilizes
616 LUTs, 303 flip flops, and 4 BRAM, which increases
the total LUT usage beyond that of Drimer-AES. But, at the
expense of these extra resources, DRAB-LOCUS achieves
more functionality. This shows that including extra algorithm
optimizations such as T-boxes can reduce the potential for
design functionality, and that minimally increasing resource
usage can allow for extra functionality, such as supporting
encryption and decryption concurrently on multiple blocks.

B. Implementation Efficiency

Studies that build FPGA designs often evaluate the effi-
ciency of their implementation by computing the amount of
throughput produced per logic slice. For example, Drimer-AES
achieves 22.6 Mbps/slice and DRAB-LOCUS achieves 22.75
Mbps/slice. However, this metric does not give any informa-
tion on how much the BRAM and DSP resources contribute to
the design throughput. This approach also neglects whether all
of the slices in a design are part of the datapath, key schedule,
or controller. As the controller and key schedule do not process
input data directly, it may be inappropriate to include their
slice usage in efficiency measurements. This is a philosophical
question we leave to future research for more discussion.

To address these two issues, we propose that evaluation
of design efficiency should incorporate the following metrics
for resources in the datapath only: Mbps/LUT, Mbps/flip
flop, Mbps/BRAM multiplied by the average BRAM memory
usage, and Mbps/DSP.

The LUT and flip flop metrics would be useful in applica-
tions where a limited number of logic slices are available,
as it shows how well the implementation would capitalize
on the remaining available logic slice elements. On the other
hand, the BRAM and DSP metrics would be informative in
the case where these resources are limited, and a designer
is concerned about whether a design uses them to their
full potential. Additionally, we incorporate the percentage of
memory utilized in BRAM into the metric to indicate how
effectively the available memory is used.

As Drimer et al. address in their study, we suggest that
future studies report as much information as possible about
their implementations in order to increase transparency when
evaluating AES designs, as we do in this study. For example,
neither de la Piedra et al. nor Drimer et al. state how their
control mechanisms contribute to resource usage, and neither
Wang and Ha nor de la Piedra et al. state how their key



TABLE I
ARCHITECTURE PERFORMANCE COMPARISON

Resource Usage (#) Performance Metrics

Slices LUTs Flip Flops BRAMs DSPs Frequency Latency Throughput Target Device
(MHz) (Cycles) (Gbps)

Drimer-AES 296 393 665 9 16 550 84 6.7 Virtex 5
Datapath 259 338 624 8 16

DRAB-LOCUS 310 909 593 16 18 528 115 7.055 Zynq 7000
Datapath 167 266 256 12 18

TABLE II
THROUGHPUT PER RESOURCE (MBPS/#)

LUT Flip Flop BRAM DSP

Drimer-AES 19.8 10.7 837.5 418.75
DRAB-LOCUS 26.5 27.56 220.47 391.94

TABLE III
DATAPATH POWER CONSUMPTION (MW)

Logic BRAM DSP Signal Total
Slices +Clock

Drimer-AES 56 285 111 39 491
Drimer-Expanded 165 2140 833 74 3212
DRAB-LOCUS 7 259 58 88 412

schedules contribute to resource usage. This makes it difficult
to accurately evaluate their efficiency using these metrics.
The adjusted efficiency measurements for Drimer-AES and
DRAB-LOCUS is shown in Table II, as these two designs
state the resource usage for the datapath alone. This table also
reveals that it is effective to use block RAM and DSP slices in
the AES datapath, as each singular unit is able to process large
chunks of data (32-bit for BRAM, 48-bit for DSP), instead of
splitting operations across multiple LUTs and flip flops.

C. Design Effects on Power Consumption

While there are fewer FPGA AES studies that focus on low-
power implementations, power consumption is still an area of
interest for many system designers. Drimer et al. do report
the power consumption of Drimer-AES, and also present
a fully-unrolled implementation, Drimer-Expanded, built on
the base structure of Drimer-AES which we include here in
our power analysis. The power consumption of these two
implementations and DRAB-LOCUS is shown in Table III.

Drimer-AES uses more LUTs and flip flops than DRAB-
LOCUS, which is the cause of the higher slice power con-
sumption. However, Drimer-AES uses slightly less BRAM and
DSP resources than DRAB-LOCUS, which is not reflected
in the power comparison. This may be due to differences
in the target device, as Drimer-AES is implemented on a
high-performance Virtex 5 FPGA, which generally consumes

more power than the Zynq 7000 SoCs. This highlights the
importance of disclosing the target device as part of an AES
implementation analysis.

On the other hand, Drimer-Expanded consumes nearly 10
times the power of DRAB-LOCUS and Drimer-AES. With
a fully-pipelined structure, this design also uses significantly
more resources. Table III shows that the large increase in
power consumption from Drimer-AES to Drimer-Expanded
comes from BRAM and DSP slices, which both have increase
factors of 7.5, while the logic slice power only increases
by a factor of 3. This shows that using more BRAM and
DSP slices in a design will significantly increase the power
usage. Therefore, while low-area designs certainly consume
less power due to their lower resource usage, ones that use
BRAM and DSP slices will have higher power consumption
than equivalent designs that primarily use logic slices.

Finally, while the power consumption of a running im-
plementation is important for power supply considerations,
it is also desirable to know how much power over time is
required to process data. We propose that an additional power
metric of nanowatt-seconds required to process a single block
is needed to better measure the tradeoffs between latency and
pipeline length. Overall, this metric reflects how effectively the
design uses its power to process data. The DRAB-LOCUS
implementation uses 7.47 nanowatt-seconds, Drimer-AES uses
9.37 nanowatt-seconds, and Drimer-Expanded uses 622.17
nanowatt-seconds to process a single block of input data.

V. CONCLUSIONS

We proposed an area-efficient AES architecture, DRAB-
LOCUS, that achieves a balance between resource usage and
throughput by incorporating under-utilized FPGA components,
such as BRAM tiles and DSP slices. We identified how
architectural design decisions influence key trade-offs and
discussed new metrics for evaluating the efficiency and power
usage of cryptographic accelerators. These metrics provide
a measure of how effectively a design capitalizes on the
available resources to improve performance. DRAB-LOCUS
achieves higher resource efficiency than throughput-focused
AES architectures, higher throughput than low-area designs,
and more functionality and lower power usage than other area-
efficient designs.



REFERENCES

[1] N. Shylashree, N. Bhat, and V. Shridhar, “FPGA implementations of
Advanced Encryption Standard: A survey,” International Journal of
Advances in Engineering and Technology, pp. 265–285, May 2012.

[2] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “DLAU: A
scalable deep learning accelerator unit on FPGA,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
no. 3, pp. 513–517, Mar 2017.

[3] C. Cong, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W. Hwu,
and D. Chen, “FPGA/DNN co-design: An efficient design methodology
for IoT intelligence on the edge,” in Proceedings of the 56th Annual
ACM Design Automation Conference, no. 206, Jun 2019.

[4] J. Hoozemans, J. van Straten, T. Viitanen, A. Tervo, J. Kadlec, and Z. Al-
Ars, “ALMARVI execution platform: Heterogeneous video processing
SoC platform on FPGA,” Journal of Signal Processing Systems, vol. 91,
no. 1, pp. 61–73, Jan 2019.

[5] J. Grycel and R. Walls, “DRAB-LOCUS: An area-efficient AES ar-
chitecture for hardware accelerator co-location on FPGAs,” arXiv, p.
1911.04378, 2019.

[6] Advanced Encryption Standard (AES), National Institute of Standards
and Technology Federal Information Processing Standards 197, Nov
2001.

[7] S. Drimer, T. Guneysu, and C. Paar, “DSPs, BRAMs, and a pinch of
logic: Extended recipes for AES on FPGAs,” ACM Transactions on
Reconfigurable Technolgy Systems, vol. 3, no. 1, Jan 2010.

[8] Y. Wang and Y. Ha, “High throughput and resource efficient AES en-
cryption/decryption for SANs,” in 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), May 2016, pp. 1166–1169.

[9] A. de la Piedra, A. Touhafi, and A. Braeken, “Compact implementation
of CCM and GCM modes of AES using DSP blocks,” in 2013 23rd
IEEE International Conference on Field programmable Logic and
Applications, Oct 2013.

[10] D. Kundi, A. Aziz, and N. Ikram, “Resource efficient implementation
of t-boxes in AES on virtex-5 FPGA,” Information Processing Letters,
vol. 110, no. 10, pp. 373–377, Apr 2010.


