Providing Geo-Elasticity in Geographically Distributed Clouds

Tian GUO, Worcester Polytechnic Institute
Prashant Sh €NOY, University of Massachusetts Amherst

Geographically distributed cloud platforms are well suited for serving a geographically diverse user base. However tradi-
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1. INTRODUCTION

Today’s cloud platforms provide numerous benefits to hosted applications such as a pay-as-you-go
cost model and flexible, on-demand allocation of resources. Since many internet applications see
a dynamically varying workload, a key benefit of a cloud platform is its ability to autonomously
and dynamically provision server resources to match a time-varying workload—a property that we
refer to as elasticity. Cloud platforms such as Amazon EC2 support elasticity in the form of “auto-
scaling” [Amazon Auto Scaling Service 2013]] where an application provider can choose thresholds
on any system metric to automatically scale server capacity when monitored metrics violate pre-
specified thresholds.

Modern cloud platforms are becoming increasingly distributed and offer a choice of multiple
geographic sites and data centers to application providers to host their applications. A geographi-
cally distributed cloud that offers a choice of multiple locations to host cloud applications provides
two key benefits. First, an application provider can choose a location that is closest to its user base
to optimize user-perceived performance. Second, for those applications that have its users spread
across multiple geographic regions, such a geo-distributed cloud offers the possibility of hosting
application replicas at multiple cloud sites so that users in a region can be serviced from the closest
application replica.

An internet application that services a geographically diverse user base is subject to workload
dynamics that exhibit both temporal and spatial variations. Temporal variations include fluctuations

This paper is an expanded version of a four-pages WIP paper [|Guo et al. 2016] that appeared in IEEE International Con-
ference on Cloud Engineering (IC2E) 2016. The majority of this work was done when Tian Guo was at University of
Massachusetts Amherst. This work is supported by the National Science Foundation, under grant 1229059, grant 1345300
and grant 1422245.

Author’s addresses: Tian Guo, Department of Computer Science, Worcester Polytechnic Institute; Prashant Shenoy, College
of Information and Computer Sciences, University of Massachusetts Amherst.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. 1533-5399/2016/01-ARTZ $15.00

DOI: 000000X.000000X

ACM Transactions on Internet Technology, Vol. X, No. Y, Article Z, Publication date: January 2016.




Z:2 T. Guo et al.

>=10%
>=1%

>=0.1% o 4 mE NA B EU 3 Asia
>=0.01% g 4
>=0 g 2 K
i a
50’7 [ _Eb‘tﬂmrcfm,cuwm:_cﬂz_.
Data Genters I —5et. Nov. Dec Jan. Feb. h]/:/a[:;n‘/;:): Mar. Jun. Jul. Aug. Sep.

(a) Heat map of Gowalla’s geographically distributed web ~ (b) Temporal and spatial variations exhibited by Gowalla
traffic comprising of 6.5 million user check-ins from Feb. check-ins dataset from Oct. 2009 to Oct. 2010.
2009 to Oct. 2010.

Fig. 1: Geo-dynamics seen by the Gowalla social media application’s check-ins data.

over multiple time-scales such as time-of-day effects, seasonal time-of-year effects as well as sud-
den load spikes due to flash crowds. Spatial variations are independent workload spikes that are
specific to geographic regions. Spatial variations in the workload occur since the application may
be more popular in one region (e.g., country) than another, the user growth may differ from one
region to another, and regional events (e.g., local festivals or local news stories) may cause spikes
in one region without impacting the workload in other regions. These spatial effects are depicted in
Figure[I] which shows the client distribution of Gowalla, a popular social application, and illustrates
the global client base of such applications [Cho et al. 2011]. Figure[Ta] shows that the application is
more popular in certain regions such as North America and Europe and less popular in regions such
as Asia. Figure[Tb|shows the month-to-month growth of users seen by the application. It shows that
growth from users in Asia is higher than users growth in other regions. The figure also shows that
the rate of growth fluctuates from month to month; for example, there is a spike of European users
in October, while there are some months where the number of users from some region sees a nega-
tive growth (i.e., a decline) while other regions see positive growth. While techniques for handling
temporal variations in user traffic have been studied [Singh et al. 2010], provisioning techniques for
handling both temporal and spatial fluctuations in the workload are needed for applications with a
geographically diverse user base.

In this paper, we argue that a geographically distributed cloud platform should support geo-
elasticity to efficiently meet the need of internet applications that observe geo-dynamic workloads,
i.e. workloads that exhibit both temporal and spatial variations. Geo-elasticity enables the cloud
platform to autonomously vary the cloud locations hosting application replicas as well as vary the
number of application servers at each location to handle both temporal and spatial variations in
the workloads. Much of the prior work on dynamic provisioning focuses on local elasticity mech-
anisms within a single data center [Lim et al. 2010; Singh et al. 2010; [Shen et al. 2011]], which
is sub-optimal for geo-dynamic workloads since it does not allow the set of cloud locations that
host the application to vary dynamically. We design a system called GeoScale to addresses these
challenges. In doing so, our paper makes four contributions:

First, we present a geographic profiling and forecasting technique that monitors the workload
of a cloud application, geographically clusters the workload into the cloud locations, and employs
time-series forecasting to predict the future workload across regions.

Second, we present a new geo-elasticity technique that can handle dynamics in both the volume
and geographic distribution of application workloads. At the core of our approach is a queuing-
theoretic model, seeded with empirical measurements, that determines the server capacity needed
at each cloud location.

Third, we design proactive and reactive algorithms for geo-elasticity that incorporate our work-
load forecasting and capacity modeling techniques. Broadly our proactive approach provisions ca-
pacity at longer time scales while our reactive approach is able to handle capacity allocations for
unpredictable or unexpected workload changes.
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Fig. 2: GeoScale architecture. GeoScale is comprised of three key components, 1) workload mon-
itoring, profiling, and forecasting engine, 2) model-driven proactive and reactive geo-elastic provi-
sioning algorithms, and 3) geo-elastic cloud provisioning and copying engine.

Fourth, we present a prototype implementation of GeoScale and conduct a detailed experimental
evaluation of our system by using Amazon EC2 distributed cloud to run representative applications
and PlanetLab nodes to inject a geographically diverse workload. Our experimental results show
13% to 40% improvement in the 95" percentile response time when compared to traditional elastic-
ity techniques. With pre-copying optimizations, GeoScale achieves fast provisioning of new server
capacity in tens of seconds.

2. BACKGROUND AND PROBLEM STATEMENT

In this section, we first present background on geo-distributed clouds and the application model
assumed in our work, followed by a description of the geo-elasticity problem addressed in the paper.

Geographically distributed Clouds. Our work assumes a geo-distributed cloud platform that com-
prises data centers from different locations. The cloud platform considered is an Infrastructure-as-
a-Service (IaaS) public cloud that provides virtualized compute and storage resources, in the form
of virtual machines (VMs), to its customers. We assume that the cloud exposes application pro-
gramming interface (API) to customers to request, start, stop, and terminate servers at a specific
location; customers do not have direct access to the underlying hypervisor on a physical server and
must manage their VMs through the cloud’s API. We assume the cloud platform has the capability
to monitor and analyze the incoming workload of an application to determine both the geographic
distribution and the temporal variations in the workload.

Application Model. Our work targets multi-tier web-based applications that service a geograph-
ically distributed client base. The application employs a front-end tier that implements the appli-
cation logic and a back-end tier that stores application data, often in a database. We assume the
application—either with both tiers deployed inside a single VM or separate VMs—is designed to
be replicable. That is, we can spawn multiple VMs, each housing a replica of the application (or one
of its tiers), to host such applications. We further assume that the task of maintaining consistency
among back-end replicas is handled by applications using any method that suits their needs. For
example, an application can draw upon techniques [Pujol et al. 2010; Kraska et al. 2013}, |Patino
Martinez et al. 2005] used by master-slave databases, multi-master databases, or database middle-
ware systems that offer a spectrum of tradeoffs between costs and performance.

(Geo-)Elasticity. In this work, we consider cloud-based elasticity mechanisms that autonomously
provision the server resources on behalf of an application. We look at both model-based and reactive
provisioning techniques that enable horizontal scaling by dynamically replicating the application
VMs. For reactive provisioning, application providers are assumed to specify thresholds on perfor-
mance metrics such as request rate, response time or server utilization. The cloud platform then
monitors any threshold violations to allocate or deallocate server capacities within each data center.
We refer to this traditional form of elasticity as local elasticity. However, local elasticity is subop-
timal for applications that have geographically-diverse user base since it fails to consider spatial
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Fig. 3: GeoScale hybrid provisioning illustration. GeoScale proactively provisions server re-
sources based on the the predicted workload peak in the coming provision period. Within each
proactive provisioning window, reactive engine monitors for SLA violations. When SLA violations
are detected (blue shaded areas) and last more than oscillation window (darker blue area), GeoScale
uses reactive algorithm to scale up server resources.

workload variations. We propose geo-elasticity, a mechanism that dynamically provisions server
resources at any geographic location when needed by taking both temporal and spatial workload
variations into consideration. Geo-elasticity enables better user-perceived performance by allowing
resources to be provisioned closer to clients, rather than being constrained by the current set of
cloud sites that host an application. The goal of our work is to design and implement such a geo-
elasticity technique into a distributed infrastructure cloud platform; while we currently implement
our approach as a cloud middleware, our techniques are easily integrated into the cloud platform fab-
ric. We also compare our approach with a manual approach of choosing cloud sites and a Content
Delivery Network(CDN) based approach.

Formally, the geo-elasticity problem can be stated as: given an application servicing clients C =
{c1,¢2...cn}, we wish to provision a set of servers S = {s1,s2...5,} among a set of cloud locations
L ={lj,l...It} such that an application-specified SLA metric is satisfied and the average client
network latency is minimized.

2.1. GeoScale System Architecture

We design GeoScale, as depicted in Figure[2] to provide geo-elasticity in geographically distributed
clouds. GeoScale is implemented as a middleware layer that uses cloud API to programmatically
provision servers on behalf of cloud applications to handle workload dynamics. The workload mon-
itoring, profiling and forecasting engine is responsible for monitoring the incoming request, creating
a geographic profile of the workload using clustering techniques, and then employing time-series
forecasting techniques to predict the future workload based on the recent history. GeoScale supports
two provisioning algorithms: the proactive provisioning algorithm handles long-term provisioning
based on future forecasts, while the reactive provisioning algorithm reacts to short-term workload
dynamics, unexpected workload spikes and even forecast errors, all of which may need additional
capacity, beyond that provisioned by the proactive method. The algorithms are model-driven and use
queueing models to provision sufficient capacity to meet the application-specified SLA, by capturing
the relationship between system resources and application performance. Finally both the copying
and provisioning engines use cloud API to perform on-demand data copying or lazy pre-copying,
to deploy servers at chosen cloud sites or make adjustments to the number of servers.

We describe the design and implementation of three key components of GeoScale in Section [3|
and Section 4] followed by a detailed experimental evaluation in Section 3]

3. PROVIDING GEO-ELASTICITY USING GEOSCALE

GeoScale uses a hybrid provisioning approach—proactive and reactive provisioning—to handling
workload fluctuations, as illustrated in Figure |3] At the end of each provisioning period, GeoScale
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deactivates its reactive engine and starts its proactive one that provisions enough resources in each
data center based on the predicted peak workload. Proactive provisioning can take up to a couple
hours if it involves steps such as copying application data across geographically distributed data
center locations, or warming up in-memory cache [[Guo et al. 2013} [Scryer 2013||. Therefore, it is
crucial to mask the lengthy provisioning time by proactively allocating resources before the work-
load spike arrives.

After the proactive engine has successfully setup application servers, GeoScale then re-activates
the reactive engine that monitors SLA violations. Upon detecting a violation, the reactive engine
will trigger reactive provision only if the violation lasts long enough, i.e., longer than a predefined
oscillation window. As a result, only the second violation causes additional resources being pro-
visioned, as shown in Figure E} The use of an oscillation window is a common technique [Wood:
et al. 2007] to restrict actions to lasting behaviors. We leverage it to prevent the reactive engine from
scaling up and down resources for temporary workload fluctuations.

When workload drops below a predicted peak for longer than the oscillation window, the reactive
engine will stop all the servers it started. However, the reactive engine will not scale down resources
provisioned by the proactive engine. As a result, over provisioned resources by the proactive engine
are wasteful, i.e. incurring unnecessary cloud bills. However, such scenarios can be mitigated by
tuning the provision period—a smaller window allows the proactive engine to adjust server alloca-
tions more frequently and make better workload predictions.

3.1. Workload Monitoring, Profiling and Forecasting

Workload Monitoring. We assume that GeoScale has access to a log of the application’s incoming
requests at each data center location that houses a replica of the application. The incoming request
stream at each site can be logged either at a load balancing switch that distributes incoming requests
to front-end replicas, or can be constructed by periodically aggregating request logs directly from
each front-end replica (e.g., apache web server logs). We assume that request logs contain informa-
tion such as a time-stamp, client IP address, requested URL, service time and response time seen by
that request.

Geographic Workload Clustering. Given a request trace from each site, GeoScale first translates
each client IP address to the client’s geographic location using an IP geolocation techniqueF_-] The
client locations are then mapped to pre-configured geographic bins that are specified by the applica-
tion provider. Each bin represents a certain geographic region and could be configured at different
granularity based on the level at which the workload needs to be monitored. For instance, a bin may
represent an entire city such as Los Angeles, or a state such as Massachusetts, or larger regions such
as countries or even continents. GeoScale uses the specified bins to track the workload from the cor-
responding geographic regions. Next, GeoScale calculates the geographic distances d, as a proxy
for network distance [Ng and Zhang 2002], between each bin—represented by a weighted center of
all requests within the bin—and data center pair by using the Heversine formula in Equation (1).

A A
a:sin2(7¢)+cos¢1-cosqh-sinz(%l)) )
d = 2R - arcsin(min(1,v/a)),

where ¢; and ¢; represent the latitude and longitude of location i and R is the mean radius of the
Earth. This yields a sorted list of data centers, in ascending order of distance, for each geographic
bin. Note, unlike network distance, obtaining geographic distances d does not require explicit client
participations.

The iterative greedy clustering then proceeds by assigning each geographic bin (and its traffic
volume) to the closest cloud data center. Once all bins have been mapped to a data center, the
clustering algorithm sums the application traffic assigned to each data center. If a data center does

'GeoScale uses Maxmind [Maxmind GeolP Service 2013| GeolP location service.
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not receive sufficient traffic (less than a threshold 7) to justify deploying an application replica, the
data center is removed from the sorted list of all bins. The mappings between geographic bin and
data center are updated with the new sorted lists. This greedy iterative clustering process continues
until each bin has a mapping to the closest possible data center such that all data center locations
have at least a threshold T amount of traffic mapped onto them.

We also formulate the problem of determining a mapping X;; between a geographic bin i and a
cloud location j as an Integer Linear Program(ILP) as follows:

M K
Minimize Z Z W,’X,'jDij
i=1j=1

Subject to
M
ZXUT;ZT V]ZIK 2)
i=1
K
Y Xij=1 Vi=1..M 3)
j=1
X;je{0,1} Vi=1..M,j=1...K @)
X;jjPi<P Vi=1.M,j=1...K 5)

where X;; is a binary variable that is set to 1 if i'" bin is served by j cloud location and set to 0

otherwise. D;; denotes the distance between " bin and j”’ cloud location, 7; represents i'" bin’s
traffic volume, and P; specifies the maximum amount of time needed to provision server resources

in j cloud location. P; can take values ranging from minutes to hours [Mao and Humphrey 2012;
Sharma et al. 2015] depending on factors such as database availability, and instance types. Further,
P represents the upper bound of allowable provisioning duration, and needs to be predefined by
application owners. Constraint (2]) ensures the chosen cloud location receive a threshold 7 amount
of traffic; Constraints (3) and (@) together ensure that each bin is mapped to one and only one cloud
site. Constraint (5)) restricts the set of cloud locations GeoScale can select from and is only used
for global reactive provisioning (see Section [3.3). The objective function minimizes the weighted
latency among all regions by assigning weights w; that are proportional to T;.

Workload Forecasting. The final step is to employ workload forecasting to determine the future
(peak) workload that will be seen by each cloud site based on the above mapping. Any workload
prediction or forecasting technique can be used for this purpose [Hellerstein et al. 1999]]. GeoScale
uses a simple approach that aggregates the workload traces from each bin that is mapped onto a
cloud location to determine an aggregate workload trace for that location. The trace yields a time
series of previous request rates and the time series can be modeled as an ARIMA time series to
forecast the future load; the peak of the future predictions is chosen as the maximum load that will
be seen by that cloud location for the application. An alternate approach is to combine the request
traces from all bins mapped to the cloud location to generate an aggregate request trace and compute
a workload distribution from this aggregated trace. The workload distribution is a probability distri-
bution of request rates and the likelihood of seeing that request volume. A high percentile (e.g., the
95 or the 99" percentile) of this distribution can be chosen as the peak workload likely to be seen
by this data center based on past observations. In either case, we obtain a prediction l}’ of the peak

workload that will be seen by j” cloud location and the provisioning algorithm must then provision
sufficient capacity to handle this workload and meet the application’s SLA.
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3.2. Proactive Geo-Elastic Provisioning

GeoScale supports two types of geo-elastic provisioning, i.e., proactive and reactive, to handle work-
load dynamics at different time scales. In this section, we first describe proactive provisioning that
operates periodically at longer time scales of hours or days and provisions server capacity to han-
dle long-term workload trends observed at these time scales. We the reactive provisioning next in
Section[3.3]

Varying Cloud Locations. Proactive provisioning uses the workload predictions from the previous
section to drive the provisioning algorithm. Note that the previous step maps workloads from each
geographic region or bin to the closest possible cloud location. In a scenario where an application
rises in popularity in a new geographic region, the newly observed workload may get mapped to
a new cloud location, causing proactive provisioning to start up one or more servers at this new
location. Similarly a diminishing workload from a region may cause servers at a current location
to be shut down, with the residual traffic from that region redirected to the closest active cloud
location. Thus, proactive provisioning provides geo-elasticity by using observed changes in the
spatial distribution of the workload to vary the number of cloud locations that house replicas of the
application. This is in addition to handling changes in the temporal distribution in load at existing
locations, which is handled by scaling the number of servers at those sites up or down.

Deriving Server Capacity. GeoScale employs a model-driven approach for its proactive provi-
sioning algorithm. To determine the server capacity (i.e., number of servers) required at each lo-
cation, let lf denote the peak workload that will be seen by this location j as per the workload
forecasting engine. We employ a G/G/1 queueing model of an individual server to determine the
maximum request rate lj? that can be serviced by a single cloud server without violating the appli-
cation’s SLA. Modeling for individual server provides us the flexibility to employ heterogeneous
resources. That is, if we were to use G/G/n to model a network of n servers that share a request
queue, the corresponding performance model can only help us reason about provisioning using
homogeneous servers.

We use Kingman’s theorem [Kingman 1961] for G/G/1 queue under heavy traffic. The theorem

2 2

states that waiting time W is an exponential distribution with mean E[W] = ;(‘f:’cj)
)

0'5 denote the variance in the requests inter-arrival time and service time, and A and x represent the
request arrival rate and mean service time seen by this queueing system. Here, SLA y is defined
as the 95" percentile of server response time. That is, if the y = 2 seconds, the 95" percentile of
response time T, denoted as o7 (95), has to satisfy o7 (95) < 2. We then derive the upper bound on
the maximum rate ),]? under heavy traffic as shown in Equation (6). A sketch of the derivation is

provided in Appendix |A]and additional details can be found in [Guo et al. 2015]].

; where 62 and

3(0ja> +0°)

2(y—x;)

Obtaining Server Statistics. GeoScale uses empirical measurements from the workload monitor-
ing component to estimate the variance of inter-arrival times and service times of requests Gjaz and
Gjbz. The request service times X; at location j can be computed from server logs or measured by
profiling the application on the server; if location j is a new location with no previous history, the
observed service time from an existing nearby cloud location can be used as the initial estimate.
The SLA y is specified by the application provider as the upper bound of response time that should
not be violated, in our case 95" percentile of server response time. Since all terms of Equation (@)
are either known or empirically measured, we successfully obtain the maximum request rate lj? that
can be handled by a single server.

Calculating Server Numbers. We calculate the number of servers §; required at location j to
handle a peak request rate of ?Ljp in Equation (7). If S; is greater than the current number of servers

A§ < |xj+ (6)
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S j provisioned at location j, then the provisioning algorithm needs to scale up capacity by allocating
(S; —S;) additional servers. If S; < S, then capacity is scaled down by deallocating (S; — S;)
servers. If § 7 =0, this is a newly chosen cloud location for the application, and S; new servers need

A

to be started up at this location j. At the end of proactive provisioning, S; is set to S,

Si=|=%1. (7)

3.3. Reactive Geo-Elastic Provisioning

GeoScale employs reactive provisioning to make agile changes to the long-term capacity provi-
sioned by the proactive algorithm—to handle any unexpected workload surges or to correct for
errors in the predictions used by the proactive algorithm. GeoScale supports two forms of reactive
provisioning: local and global. Local reactive provisioning is the simpler of the two and is used to
make local adjustments to the capacity at a local cloud site—independently of application replicas
at other locations. Local reactive provisioning is useful when there are changes in the volume of
workload arriving at a cloud location but the overall geographic distribution of the workload re-
mains (mostly) unchanged. Local reactive provisioning is triggered when response time SLAs are
violated at one or more local cloud servers. GeoScale then estimates the new workload AJ’-’ arriving
at the current location j and determines the new server capacity needed to handle this workload as

ST = [i—ﬂ and provisions an extra (S} — S ;) servers for the application.

GeoScale also supports a more sophisticated global reactive provisioning approach that takes
a holistic view of all the cloud locations upon being triggered, rather than just making capacity
changes at a single local site. Global reactive provisioning is useful when the application experiences
a sudden change in its geographic workload distribution (possibly in addition to changes in request
volumes). GeoScale’s global reactive provisioning algorithm requests the newly observed workload
from the workload monitoring engine and obtains the current request rates emanating from each
geographic region (or bin). It then checks for deviations in the workload observed in each geographic
regions and the previously predicted peak workload for that region—to determine which region
caused the SLA violations to occur. The algorithm then provisions new server capacity for the
extra workload at a cloud site that is closest to each such region. Observe that this may cause the
reactive approach to spawn new replicas at new cloud locations that did not previously host the
application (yielding reactive geo-elasticity). Since reactive provisioning must be agile (to handle
SLA violations that are already occurring), the ability to quickly provision new capacity at a new
cloud location depends on whether the VM images (and data) for the applications are already pre-
copied to that region. If images or data are not available, it may be faster to provision capacity at
another nearby location that already houses an application replica, rather than at the optimal cloud
site (since application images and data are already present at that site, new servers can be quickly
provisioned). In essence, when making decisions in the global reactive mode, GeoScale takes into
account provisioning time and only selects those data centers that can spawn application replicas
fast (refer to constraint (3)). As noted below, GeoScale pre-copies application VM images and data
in the background to new locations to reduce the replica startup times for proactive and reactive
provisioning—which allows for global reactive provisioning to be more effective in such scenarios.

3.4. Agile Provisioning Using Precopying

The goal of GeoScale’s provisioning engine is to actually scale server capacity up or down as dic-
tated by the proactive or reactive algorithms. To do so, the provisioning engine assumes that the
virtual machine disk image and copies of all network storage volumes holding application data are
available to it. To add a new server to an application, the provisioning engine first uses the cloud
API to start a new server from the VM image. Once the server starts up, any additional network stor-
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age volumes may be attached to the server (by first making a snapshot and a copy of the additional
storage volume). The newly started server is then added to the pool of application replicas at that
site—for instance, by adding it to the pool of servers that are served by a front-end load balancing
switch.

The latency involved in provisioning a new server for the application depends on whether the
VM image and disk data are already available at the desired cloud site. If so, provisioning times
depend on the time needed by the cloud platform to spin up a new server, followed by a small
configuration overhead. If not, the VM image and application data must first be copied over from
another cloud site where it is available—in this case, provisioning latency is dominated by cross-
data center data copying overheads, which can be substantial if the application disk state comprises
tens or hundreds of gigabytes of data. To reduce such latencies, GeoScale employs a lazy pre-copy
optimization where it takes periodic snapshots of application’s VM disks and lazily copies them in
the background to new sites that are likely to house this application’s replicas in the future. The
choice of future sites requires manual input from the application provider or the use of historical
workload information to pick geographic regions that are seeing steady workload increases.

The pre-copying process involves two steps: (i) GeoScale takes an application-agnostic snapshot
of its disk volume and periodically takes incremental snapshots of subsequent changes and lazily
transfers these snapshots to each potential future cloud site in the background; (ii) block-level deltas
are used, in place of sending entire blocks, when disk blocks see small changes to their data. In
either case, if data has already been pre-copied to a location, the VM disk state can be quickly
reconstructed by transferring any incremental changes since the most recent pre-copying and a new
server is started using this reconstructed disk image. If pre-copied data is not available, GeoScale
initiates a full transfer of the VM disk image and any other application data volumes to the new
site and starts up the new server once the data has been copied to the new site. The latter method is
acceptable for proactive provisioning since it allocates capacity over long time-scales, but may not
be desirable for agile reactive provisioning that needs to quickly scale up capacity. Therefore, when
data is not available in the closest data center during global reactive provisioning, GeoScale may
choose to start up new servers in other nearby locations where VM disk images are already available,
rather than copying data. Specifically, the locations are selected using the ILP from Section As
noted in the ILP constraint (3)) and objective function, the subset of eligible data centers are the ones
that can finish provisioning servers within a given time threshold; and the specific locations are then
chosen to minimize weighted latency among all regions.

3.5. Discussion

Hybrid vs. reactive. GeoScale explores a hybrid approach of using reactive and proactive provi-
sioning in geographically distributed cloud locations. Prior research [[Urgaonkar et al. 2005} [Shen
et al. 2011]] has shown the benefits of combining the two approaches for local elasticity. In addition,
industry and companies are also accepting such hybrid provisioning approaches. For example, Net-
flix [Scryer 2013| has argued that combining proactive provisioning with Amazon’s auto-scaling (a
reactive approach) works better for them. As noted earlier in the paper, provisioning and configuring
an application server can take up to a few hours in the geo-elasticity case—such sustained, multiple
hours of SLA violations may not be acceptable to many applications. So the benefits of applying a
hybrid approach for geo elasticity are even greater when compared to local elasticity.

Next, we would like to explain why a reactive approach alone may not be the best strategy. A
pure reactive approach inherently acts after a workload increase is observed. In scenarios where
the workload is rising quickly, this may cause a temporary violation of SLA until new capacity is
provisioned. In contrast, a proactive approach attempts to predict future workload increases (through
workload forecasting) and provisions new capacity before the workload begins to increase. This
avoids transient SLA violations for the application.

While the reactive approach may be adequate for situations with slow workload growth and quick
provisioning, it has limitations for workload spikes. The situation is exacerbated for geo-elasticity
since provisioning time can be orders of magnitude longer, e.g., when trying to copy state to a
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remote data center and then start servers at the new location. This can increase the duration for
which SLA violations are observed.

GeoScale’s use case scenarios. GeoScale supports both proactive and reactive provisioning that
are designed for different scenarios. Proactive provisioning relies on predicting workload intensity
and uses workload prediction as a basis to allocate or de-allocate server resources. The effectiveness
of proactive provisioning depends on several key factors, such as accuracy of workload prediction
and cloud server capacity variations [Schad et al. 2010]]. Therefore, in addition to periodically invok-
ing proactive provisioning that makes adjustment plans using holistic information, GeoScale also
performs reactive provisioning when SLAs are violated. Local reactive provisioning behaves sim-
ilarly to Amazon EC2 “auto-scaling” while global reactive provisioning makes trade-offs between
provisioning time [Mao and Humphrey 2012] and network latency reduction. Overall, GeoScale is
configured to perform proactive provisioning periodically and only uses reactive provisioning as a
complementary method to offset provision inefficiencies due to prediction errors.

Provisioning agility vs. DNS overhead. Unlike traditional provisioning that uses a static set of
cloud location, GeoScale might introduce performance overhead from DNS lookups. Here, we dis-
cuss when such overhead can happen and the impact on client response time. In particular, setting
appropriate time-to-live (TTL) values for DNS A records can impact how fast end users can benefit
from servers in newly provisioned data centers, and how quickly GeoScale can scale down server re-
sources. For example, when we have type A resource records with 77 L = 300 seconds, if GeoScale
provisions servers in a new data center, some end clients won’t have access to new IP addresses for
up to 5 minutes. This is because clients might still have cached DNS lookup responses from before
the new type A record containing the updated IP addresses is configured. Similarly, GeoScale needs
to wait for at least 5 minutes before deactivating a data center in order to avoid end user request
errors. Therefore, to obtain the maximum provisioning agility, we need to set the DNS records TTL
to a value as low as possible.

However, a shorter TTL value might increase DNS lookup time, e.g., taking 1 second instead of
100 ms [[Ager et al. 2010]. This is because a shorter TTL value causes downstream DNS servers and
caches to expire records faster. When cached DNS requests expire, lookup requests have to travel all
the way to an authoritative name server. Note that, this type of DNS lookups will only happen once
every TTL seconds, and once DNS records are cached on an intermediary transit path, subsequent
lookups within TTL seconds can still benefit from caching. In addition, each client will only need to
perform at most | Ly | DNS lookups, where Tyegi0r is the duration of each HTTP session. Because

T&(’S sion

sessions can have many requests, overhead associated with DNS therefore can be amortized across
all requests. Once a domain name is resolved to a public IP address of newly provisioned servers,
client requests can then be routed and serviced at the closest cloud location, avoiding unnecessary
network latency. Overall, the performance overhead caused by slower DNS lookups is minimal and
can be offset by hundreds of milliseconds network reductions for every client request.

Considering the above, GeoScale employs an adaptive TTL policy for A records. Specifically,
GeoScale uses an initial TTL value of 3600 seconds (maximum) and decreases it by 300 seconds
whenever GeoScale makes provisioning plans that involve changing the set of active data centers,
i.e., data centers that host application servers. Intuitively, the more frequent application cloud con-
figuration changes are, the lower the TTL. The minimal TTL is restricted to be 300 seconds. In
contrast, TTL is increased by 300 seconds when the provisioned data centers remain the same. By
using an adaptive TTL policy, GeoScale automatically makes tradeoffs between provisioning agility
and lookup overheads.

Other considerations in geographic provisioning. GeoScale uses a centralized approach that col-
lects and aggregates workload information from distributed locations. Because GeoScale has a holis-
tic view of workload distribution, it is well suited to make trade-offs between provisioning cost and
performance gain, as demonstrated by our experiment and simulation results in Section [5.4] That
is, if a data center location is only going to serve sparse client workloads, GeoScale can decide to
inactivate this location and redirect future workload to a closer-by active cloud. Similarly, if client
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workloads emerge near inactive cloud locations, GeoScale can provision an appropriate amount of
servers in these new locations. However, approaches such as single-site elasticity or multi-site elas-
ticity, only scale up and down servers in existing cloud locations. Therefore, such static provisioning
approaches, failing to take advantage of low network latency, are sub-optimal for applications with
growing and dynamic workload from different geographic locations. In contrast, GeoScale is most
useful for such applications. But for applications with more centralized workloads or evenly dis-
tributed workloads, approaches such as single-site elasticity or multi-site elasticity that provision
server resources in a static subset of all available cloud locations, are equivalently efficient.

4. GEOSCALE IMPLEMENTATION

We have implemented a prototype of GeoScale on top of Amazon EC2 cloud. GeoScale is written
in Python and Java, and is implemented as a middleware that uses EC2 API to provide geo-elasticity
to applications across Amazon’s global network of cloud data centers. When deploying applications
using GeoScale, application owners need to provide GeoScale access to application VM images.
These images contain both application code and data, and are preconfigured with necessary com-
ponents such as Apache web server, or MySQL database. In addition, application owners need to
provide either previous workload information together with server statistics (see Section[3.2)) or ini-
tial server configurations, including number of servers, server type and cloud locations. GeoScale
then deploys application by renting servers from EC2, and proactively adjusts resources periodi-
cally. GeoScale consists of a central provisioning manager that runs in one of Amazon’s EC2 data
centers and a distributed daemon that is deployed to all managed application servers. This central
manager is chosen to run in a data center location that offers cheaper server resources and has the
best network connectivity to the active data centers for fast aggregation of monitoring data. Because
the set of active data centers vary over time due to workload fluctuation, the location of the cen-
tralized manager is updated to reflect such dynamics. However, for all our experiments, we host the
centralized manager in Amazon’s Virginia data center for simplicity. Next, we describe the compo-
nents of GeoScale’s central manager in detail, as depicted in Figure[2}

o Workload Monitoring, Profiling and Forecasting. GeoScale collects workload statistics by run-
ning a small daemon on each of the application’s servers; the component collects system statistics
using standard Linux utilities, e.g., sar, and gathers application logs (such as Apache Tomcat
logs). We modified the Apache Tomcat server to log request service times, in addition to standard
information such as response times and client information. Request service time information is
essential in our queueing-based approach for deriving server capacity, discussed in Section
If the application uses a load balancing software component, request logs can be gathered from
this component, rather than from application logs at each server replica. All monitored data is sent
to a central GeoScale server that runs on a Virginia-based medium-sized server for archiving and
further analysis. The central manager stores historical workload information in SQLite database;
it uses the GeolP-location service to map IP addresses to their geographic locations. Workload
forecasting is done using ARIMA time-series model from Python’s StatsModels and Pandas
Library, to predict the future workload for the application.

e Provisioning algorithms. Our model-driven provisioning algorithms is the core component of
the central manager. GeoScale supports both proactive and reactive provisioning and by default,
GeoScale periodically performs proactive provisioning that determines a new set of cloud loca-
tions and the number of servers needed for each location. The proactive provisioning period has
a default configuration of 24 hours. This time window can be tuned to reduce unnecessary cloud
cost due to over provisioning—proactive engine provisions for the peak workload predicted for
the next time window, and reactive engine is only triggered by workload spikes. Currently, we use
a heuristic method to adjust it based on past provisioning accuracy and provisioning time. The
provisioning accuracy a, is roughly indicated by the number of times reactive provisioning is suc-
cessfully triggered. The provisioning period window is increased by a, hours and is decreased by
1 hour when a, = 0. Intuitively, the proactive engine is invoked less frequently when the workload
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Table I: Amazon’s Distributed EC2 Cloud

Name Location Latitude  Longitude  Time Zone built(yrs)
us-east-1 Virginia 38.13 -78.45  UTC-05:00 2006
eu-west-1 Ireland 53.00 -8.00  UTC+00:00 2007
us-west-1 California 41.48 -120.53  UTC-08:00 2009
ap-southeast-1 ~ Singapore 1.37 103.80  UTC+08:00 2010
us-west-2 Oregon 46.15 -123.88  UTC-08:00 2011
ap-northeast-1 ~ Japan 3541 139.42  UTC+09:00 2011
sa-east-1 Brazil -23.34 -46.38  UTC-03:00 2011
ap-southeast-2  Australia -33.86 51.20  UTC+10:00 2012

pattern is less predictable. The minimal provisioning window is set to be the average provisioning
time taken.
GeoScale runs its proactive engine in the same central server that stores historical workload and
server resource utilization information. The proactive engine takes these data and predicted work-
load for the next period as input, and produces a provisioning plan using our queueing model-
based algorithms. Within each provisioning window, our reactive engine continuously monitors
the actual incoming workload and compares it with the predicted peak, as an indication of SLA
violations. If the actual workload is consistently higher for more than the oscillation window (con-
figured as 5 minutes), the reactive engine will first decide whether to use the global reactive or the
local reactive algorithms based on the availability of up-to-date workload data from current set of
active data centers, and the locations of where VM images are archived. When using the global
reactive algorithm, the reactive engine will provision servers in data centers—possibly in one of
the archived data centers—that are closest to the actual workload spike; while when using the
local reactive algorithm, the reactive engine will provision servers in data centers where workload
spikes are observed and reported from.

Provisioning engine. This component uses boto, a python interface to Amazon web services

API, to manage the application’s VMs. This provisioning engine actuates by starting, stopping

or terminating cloud servers in appropriate cloud locations, based on provisioning plans de-

rived by provisioning algorithms. To relinquish running servers during proactive provisioning,

GeoScale uses the terminate_instances command. Doing so stops all billings associated with

the servers, including computation and EBS storage. However, in order to retain the provisioning

agility, GeoScale only de-allocates computation resources but holds on to EBS storage by using the
stop_instances command. Although stopped instances incur an EBS storage fee proportional
to the entire stopped duration, they provide GeoScale the ability to provision more quickly when

compared to provisioning a new instance from scratch [stopped vs terminated instances 2017

Amazon EBS Pricing 2017]|. In addition, it works closely with the copying engine to manage the

application’s VM disk images and data, and copy them to new data centers as needed.

e Copying engine. This component is responsible for managing an application’s VM images and
data volumes. GeoScale supports both on-demand copying and lazy pre-copying. It employs
EC2 snapshot techniques, e.g., ec2-create-snapshot and ec2-copy-snapshot, to create and
transfer application-agnostic snapshots within and across data centers; for incremental snapshot
data, we use rsync to transfer incremental snapshot data efficiently, e.g., in compressed form.

5. EXPERIMENTAL EVALUATION

We have conducted a detailed experimental evaluation of GeoScale on Amazon’s EC2 cloud. Our
evaluation focuses on (i) benefits of exploiting workload dynamics, (ii) the efficacy of our capacity
model, (iii) a comparison of GeoScale with current approaches such as using a CDN or the manual
choice of multiple cloud locations, (iv) efficacy of proactive and reactive provisioning, and (v) ben-
efits of GeoScale’s pre-copying optimizations. Next we describe our experimental setup and then
our results.
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Experimental Setup. Our experiments use Amazon EC2 as our distributed cloud. As shown in
Table I, Amazon offers a choice of multiple cloud locations across several continents for hosting
applications; our experiments exploit this flexibility and allow GeoScale to provision servers for
applications at any location. To inject a geographically diverse workload to the cloud-based ap-
plication, we employ 101 PlanetLab nodes that are distributed across South and North America,
Europe, Asia and Australia. PlanetLab nodes are chosen primarily based on their availability at the
time of experiments and their proximity to data centers in Table[l] We run client workload generators
on these nodes and use a home-grown custom DNS service that resolves the server IP addresses, re-
quested by these client machines, to the nearest cloud site that hosts an application replica In addi-
tion to using geographic distance between clients and cloud servers, calculated using IP-geolocation
and the Haversine formula, we also collect ground-truth network distance of each PlanetLab node
from the various EC2 data centers using empirical round-trip times (RTT) measurements. We use
fabric [Fabric Python Module 2013]] to automate the running of our experiments.

Application Workloads. We use a Java implementation of TPC-W [The ObjectWeb TPC-W 1m-
plementation 2005] as a representative multi-tier web application for our experiments. The TPC-W
benchmark emulates an online bookstore and employs a two-tier architecture, a web server tier
based on Apache Tomcat and a database tier based on MySQL. The system provides a client work-
load generator that we run on PlanetLab nodes to generate and inject a mix of browsing and shopping
requests. We assume that the TPC-W application uses an eventual consistency model across replicas
where updates to the product catalog of the TPC-W web-store are made in batches and propagated
using eventual consistency. In addition to using the TPC-W benchmark, we also employ user traces
(i.e., check-in request logs) from Gowalla, a location-based social networking application [Cho
et al. 2011]]. The dataset comprises 6.5 million requests over a 20-month period starting February
2009 and each request includes time-stamp and the GPS coordinates (latitude and longitude) of user
check-ins.

5.1. Exploiting Workload Dynamics

In Figure[T} we showed that application workload exhibits spatial and temporal variations, and here
we demonstrate the benefits of considering both spatial and temporal fluctuations when provisioning
capacity.

We first group the PlanetLab clients into three regions and calculate the mean RTT seen by clients
in each regions to the various Amazon EC2 data centers. Figure 4] shows that network latency in-
creases with increasing geographic distance across all three regions, which validates our assumption
that geographic distance can be used as a rough proxy for network distance. Moreover, different
client regions see the smallest network latency at different data center locations, e.g. eastern US has
the best latency when serviced from Virginia (VA) data center while Europe enjoys the best latency
from the Ireland (IRL) data center. In fact, the latency benefits for placing replicas closest to clients
could be as high as 70% compared to the second best choice. This demonstrates that it is more

2 Any latency-based routing DNS service, such as Amazon Route 53, could be plugged-in for domain name resolution.
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Fig. 6: Comparisons of GeoScale’s capacity Modeling with empirical measurement. We observe
cloud location-based and interference-based capacity variations even for the same type of server
instance.

beneficial to provision replicas at cloud locations that are close to the users, rather than centralizing
all replicas at a single cloud location, which yields worse performance to distant clients.

Next we simulate the Gowalla workload by iteratively assigning its clients to the closest available
cloud locations. Figure [5] depicts the temporal variations seen by the Gowalla workload at two
simulated servers at Amazon’s California and Oregon cloud locations. The servers observe time of
day effects where the workload peaks during the day and ebbs at night—in line with the expected
temporal variations in the load. These visible time of day effects indicate that we can dynamically
scale up and down the server capacity during the day and night. Together these results indicate that
exploiting both spatial and temporal workload effects can yield significant benefits.

5.2. Capacity Model Analysis

To evaluate our queueing-based model, we empirically measure the capacity of Amazon’s small
server instances running in different cloud locations at different times of day and compare our
measurement to the model’s predictions. For each run, we host the TPC-W multi-tier application on
a small server instance in one of the cloud locations during a particular hour and ran the clients on a
nearby PlanetLab nodeE] We warm-up the application for five minutes and then steadily increase the
workload until GeoScale detects SLA violations (i.e. 95" percentile response time is greater than
1 second). We record the corresponding request rate and use it to represent the server capacity, i.e.,
the number of requests a server can service without violating SLA. At the same time, we collect the
application service time and request inter-arrival rate statistics and use the queueing model described
in Section [3.2)to estimate the server capacity. We ran this experiment with different cloud locations
and hour of day combinations and repeated the runs for 5 times for each combination.

Figure [6a] compares the server capacity predicted by GeoScale with the empirically measured
ones for each cloud location. The measured server capacity varies across cloud locations, with up
to a 12% difference in capacity across locations for the same type of server. The capacity variances
across different cloud locations emphasize the need for location-specific performance models for
the same type of server.

Figure [6b| depicts the variations in the maximum server capacity of a small server instance at
different times of the day. As shown, the measured server capacity varies over time and we see
up to 11.6% difference in the empirically observed peak capacity over time—with the highest ob-
served capacity at midnight and minimum capacity around noon. Again GeoScale’s models make
conservative predictions with accuracies ranging from 75.2% to 97.9%.

These observed capacity variations can be attributed to several aspects [Tickoo et al. 2010]], such
as heterogeneous server hardware deployed at different locations (see Table|l)) or interference from
other co-located VMs on each physical server. Regardless of the underlying causes for variations,

3The mean round-trip time between client and server is 53.63 ms.
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Fig. 7: A comparison of GeoScale’s geo-elasticity to a CDN-based approach. GeoScale outper-
forms the CDN-based approach for both default and graphic-rich browsing workload.

Table II: Different percentiles of the client-perceived latency for the CDN and GeoScale approaches.

Experiment Type 25% (ms)  50% (ms)  75%(ms)  95% (ms)
CDN (default TPC-W) 150.0 198.0 275.3 410.3
GeoScale (default TPC-W) 70.0 98.0 130.0 244.4
CDN (graphic-rich TPC-W) 254.0 304.0 389.0 521.0
GeoScale (graphic-rich TPC-W) 142.8 186.5 228.0 343.2

our empirical measurements provide a guideline for parameterizing our models. That is, in the
absence of strict performance isolation between unrelated VMs on a cloud server, the parameters
for our queueing-based capacity model must be chosen conservatively—for instance, by carefully
choosing parameters when there is high interference. Doing so ensures that application SLAs will
not be violated even in the worst case scenario of cross-VM interference.

5.3. Comparison with a CDN

This section and the next compare our geo-elasticity approach with two current approaches: use of
a CDN to service a distributed user base and use of manually chosen cloud locations to do so.

In the CDN caseﬂ depicted in Figure we deploy the TPC-W application at Amazon’s Califor-
nia data center and host all static content such as images using in edge servers that are deployed in
all cloud regions. The client, which runs on PlanetLab node in Pennsylvania, makes initial requests
to the TPC-W California servers to obtain the dynamically generated HTML page and then loads
all embedded images within the HTML page from nearest CDN server (see Figure[7a). In case of
GeoScale, the TPC-W application is itself replicated across cloud locations as shown in Figure
and the client loads both dynamically-generated page and all of its embedded static content from
the closest server (which happens to be the Virginia server for the PlanetLab client).

Figure [/c| depicts the CDF of the response times seen by the client to load a page and all of its
content for the TPC-W browsing workload mix. Table[[]depicts various percentiles of the response
times for the two aplzroaches. As shown, GeoScale outperforms the CDN approach, with a 40.43%
reduction in the 95 percentile of the response time from 410.3 ms to 244.4 ms. Since TPC-W
performs more request processing to create dynamic content and has relatively less static content,
GeoScale is able to outperform the CDN approach. We then increase the size of static images served
by the TPC-W application and repeat this experiment. As shown in Figure [7c|and Table[II] graphic-
intensive requests increase the response times, but the gap between GeoScale and the CDN approach
decreases for more graphic-rich version of TPC-W—the benefit in the 95 percentile of response
time drops from 40.43% to 34.13%. Thus, the more graphic-intensive the application and less dy-
namic content it serves, the smaller the difference between these two methods. We also note that
the two approaches are not mutually exclusive, since GeoScale can replicate the application across

#We do not use any commercial CDNs due to the lack of control of edge server locations.
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cloud locations and offload its static content to a CDN, allowing for the hybrid approach to take
advantage of the larger number of locations supported by a global CDN.

5.4. Benefits of Geo-elastic Proactive Provisioning

Provisioning Techniques. To demonstrate the benefits of GeoScale’s proactive provisioning ap-
proach, we compare it with two variants of local elasticity where the choice of cloud locations
is made manually: (i) single-site elasticity (SSE) and (ii) multi-site elasticity (MSE). SSE is a cen-
tralized approach that hosts all replicas of the application at a single cloud location, while MSE
houses the application replicas at a pre-determined static set of locations. In contrast, GeoScale has
the flexibility to vary the locations that host the application as well as the number of servers at
each location. We assume all three provisioning approaches employ the queuing model described in
Section [3.2]to handle temporal workload fluctuations.
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Fig. 12: ECDF comparison of network latency. GeoScale can adapt its behaviors under different
workload scenarios. As client workload becomes increasingly geo-distributed, the gap of network
latency between ASE and GeoScale shrinks.

Our experiment involves running TPC-W clients on PlanetLab nodes at three locations: Pennsyl-
vania and California in the USA and Germany in Europe. The workload generated by these client
sites is depicted in Figure [8a] Initially only the Pennsylvania clients send requests to the applica-
tion; at =10 minute, the California clients start sending requests, followed by requests from the
Germany clients at =20 minute. All three proactive approaches are able to scale up server capacity
in response to the workload increase. The main difference is where the servers are provisioned. The
SSE technique centralizes all replicas at Amazon’s Virginia (US-East) cloud location and scales
server capacity from one server to three servers at this site to handle the workload increase. The
MSE approach is configured with replicas at Amazon’s Virginia and California (US-East and US-
West) data centers and it provisions one server in California and two servers in Virginia to handle
the incoming workload. GeoScale’s proactive elasticity technique allocates one server in Amazon’s
Virginia data center to handle the Pennsylvania clients, followed by another server in Amazon’s
California location to handle California traffic, and a third server in Amazon’s Ireland data center to
handle the traffic from Germany as shown in Figure [8b}

Figure [0 shows the CDF of the client response times across all clients for the three provisioning
approaches. SSE has the highest response times since it uses a single cloud location to serve global
traffic, causing distant clients to see worse response times. MSE approach uses a couple of fixed
locations to host the application and is able to direct clients to the closer of the two fixed locations,
yielding better response times than SSE. GeoScale yields the best response times since it is able
to provision servers that are closest to the clients. The 95 percentile response time provided by
GeoScale is around 1060 ms, a 31.17% improvement over SSE and a 13.11% improvement when
compared to MSE.

Aside from the above experiment, we also use the network latency data collected between Plan-
etLab nodes and servers from geographically distributed clouds to simulate the behaviors of three
provisioning techniques. We create three workload scenarios that represent workload characteristics
of growing geo-distributed applications at different stages. Specifically, each scenario differs in the
level of spatial distribution, from fully centralized to evenly distributed among all regions. For ex-
ample, in the first scenario (centralized workload), client workloads are mostly centralized around

ACM Transactions on Internet Technology, Vol. X, No. Y, Article Z, Publication date: January 2016.



Z:18 T. Guo et al.

-9 PA ©© Predicted
B8 Predicted GER ¢ Actual
49 Actual GER

@

Num. of Clients
'S
S

Num. of Clients

Reactive

. Y
Q_?_?—?—H
20|
0 10 20 3 0 5 10 15 20 25 30
Time (min) Time (min)

I®)

(a) Client workload. (b) Global reactive.

Fig. 13: Illustration of reactive provisioning set up and result.

one region with light volumes from all the other regions. We control the aggregate amount of client
workloads to each popular cloud location to be slightly more than threshold 7, and for this simu-
lation we fix this threshold to be the capacity of a single server. In Figure we plot the network
latency distribution and provisioning cost achieved by three different techniques. In the first scenario
(Figure [124a), e.g., applications that have regional popularity, GeoScale (equivalent to SSE) yields
network latencies with a 95" percentile that is about twice as much as that of All-site Elasticity
(ASE), where replicas are managed autonomously within all available data center locations. This
is because GeoScale also takes provisioning costs into account, and avoids placing servers in cloud
locations that will have less than the threshold 7 traffic. In this particular scenario, GeoScale yields
a 71% saving on server costs when compared to ASE (Figure [T2d). In the last workload scenario
(Figure[I2d), e.g. applications that are popular among all geographic regions, GeoScale (equivalent
to ASE) decreases 95" percentile network latency from 204 ms to 72 ms, a 65% improvement.
However GeoScale will provision five more servers than SSE because GeoScale chooses to provi-
sion in six different cloud locations. Note, these additional five servers are only lightly loaded and
have the ability to scale to larger workload volume at each cloud location. In summary, GeoScale
can adaptively provision servers in cloud locations to make trade-offs between performance, e.g.
network latency or response time, and provisioning cost, under different workload scenarios. Such
trade-offs are achieved by varying the value of threshold 7.

Cloud Location Flexibility. To further demonstrate the benefits of flexibly using all accessible
cloud locations to host application replicas for geographically distributed users, we compare the
average network latencies seen by clients between SSE and GeoScale. In Figure [I0] we plot the
average network latencies of all 101 PlanetLab clients to the closest Amazon data center in ascend-
ing order as chosen by GeoScale. We also plot the network latency of each client to the Amazon’s
Virginia data center as in SSE approach. As shown, when provisioning capacity using SSE in Ama-
zon’s Virginia data center, clients experience up to 333.47 ms network latency. GeoScale is able to
utilize all the available data centers and to choose the nearest for each client, yielding up to 224.43
ms reduction in network latency for clients.

Workload Clustering. We compare the mean network latency achieved by GeoScale’s greedy
workload clustering algorithm to that of the ILP algorithm. Both algorithms use a same list of pre-
defined geographic bins as well as the network latency between each PlanetLab client and Amazon
data center, to produce a mapping between each bin and the best cloud location. We repeat each
experiment ten times for different numbers of available cloud locations. Figure|l 1|depicts the mean
network latency among all clients with increasing number of cloud locations. As shown in the fig-
ure, the greedy approach exhibits performance that is close to the more expensive ILP approach,
indicating that the greedy workload clustering algorithm will yield good results in practice.
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Fig. 14: Comparison of local and global reactive provisioning. Global reactive provisioning leads
to lower CPU utilization and better client response time compared to local reactive one.

5.5. Geo-elastic Reactive Provisioning Performance

Next, we evaluate GeoScale’s reactive provisioning and compare CPU utilizations and average re-
sponse times differences between global and local reactive provisioning. At the beginning of the
experiment, GeoScale only provisions a single server in Virginia data center based on the work-
load prediction of client traffic from Pennsylvania and Germany, as shown in Figure [I3a] Since the
predicted traffic from Germany is too low to justify deploying a server in Europe, no server is pro-
visioned in the Ireland data center. On the other hand, the actual workload from Germany shows a
steady, unexpected increase and eventually saturates the only server in Virginia. GeoScale detects
the SLA violation at =15 minute and therefore triggers the reactive provisioning. Local reactive ap-
proach reacts to SLA violations by provisioning an additional server in the same data center while
global reactive approach obtains workload data from the workload monitoring engine, and upon
seeing the workload increase from Germany, reactively provisions a second server in the Ireland
data center that is closest to Germany, as shown in Figure

As shown in Figure [[4a] the workload increase causes the server utilization to rise and SLA
violations to increase steadily, until it reaches a point (orange circle) where reactive provisioning is
invoked. It takes longer for server utilization to drop when using global reactive provisioning since
Germany clients progressively switch to the new server due to DNS propagation delay of around 5
minutes. Similarly, in Figure [T4b] the response time SLA violation also subsides faster when using
local reactive provisioning at t=16 minutes. But global reactive provisioning achieves lower mean
response time since it is able to provision the server closer to where the workload increase is seen.

5.6. Pre-copying Optimization Analysis

GeoScale employs three optimizations for fast geo-elastic provisioning (i) pre-copying large VM
image (ii) dynamically choosing data center pairs for pre-copying based on available bandwidth
(ii1) using Amazon EC2 storage volumes for transferring incremental data. In our final experiment,
we justify our choice of optimizations based on the huge reduction in provisioning time. We use
TPC-W applications configured with different database sizes(i.e. 10GB, 5S0GB and 100GB) We
measure the operation time of GeoScale equipped with three optimizations and compare the results
with those of the alternatives.

Pre-copying Large VM Image. In order for GeoScale to provision an application replica at a
new cloud location, it must have access to VM disk image as well as any additional data volumes,
such as database, at that location. For applications with large amounts of data, this can result in a
long delay in finishing geo-elastic provisioning in the absence of the data. Our first optimization
aims at pre-copying VM with large amount of data to cloud locations that are likely to host future
replicas. Precopying a VM image to a new location involves two main steps: (a) create a snapshot,
e.g. using Amazon’s ec2-create-snapshot, and (b) copy snapshot from one cloud location to the
new location, e.g., using Amazon’s ec2-copy-snapshot or rsync utility.

Figure [I5a] plots the preparation time to provision an application replica at a new location, i.e.,
Ireland data center, with and without GeoScale’s pre-copying optimization. Without pre-copying
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Fig. 15: Benefits of pre-copy optimizations.

data into Ireland, the process takes around 200 minutes to finish as shown in the leftmost bar group.
By pre-copying the VM data periodically, only the incremental changes since the most recent pre-
copying operation need to be transferred, therefore could significantly reduce the preparing time
for provisioning. The zoomed-in figure in Figure[I5a]depicts three scenarios where a delta of 1GB,
0.5GB and 100MB need to be transferred prior to starting up the VM; the observed latency ranges
from 355.6 seconds to 42.5 seconds, allowing the replica to be provisioned in minutes, rather than
hours.

Dynamic Source Site Selection. While Amazon’s data centers have well-provisioned network
links between them, we observe significant differences in the amount of bandwidth available (and
hence the latency to pre-copy a certain amount of data) between different pairs of Amazon data cen-
ters. Figure [T5b]compares the time to pre-copy application-agnostic snapshots of various sizes from
Amazon’s Virginia data center to its Ireland or California locations using ec2-copy-snapshot. It
only takes 3510 seconds to copy a 100GB disk image to Ireland, while it takes 7629 seconds to copy
the same disk image to the California location. This observation justifies the need to dynamically
choosing pre-copy source site based on available bandwidth to further optimize the provisioning
time.

Using EBS Volumes. Amazon provides two different ways to store application data, i.e. EBS
storage volumes and S3 storage service. We explore the operation time differences in pre-copying
data using ec2-copy-snapshot operation through EBS and S3 cp operation from Amazon’s Virginia
data center to its Ireland location. Figure shows the overhead of these two different methods
to prepare VM data for provisioning. The result shows that the use of EBS to copy incremental
data is, on average, 70.53% faster than using S3 for all three data sizes. This is not surprising,
since EBS volumes are more expensive, and also offer better performance. Finally, this supports our
optimization of using EBS volume to precopy VM data.
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6. RELATED WORK

Virtualization and Application Elasticity. Early work in elasticity focused on using virtualization
platforms to support elasticity by dynamically adjusting the resources allocated to virtual machines.
VM-based elasticity mechanisms include “scale up” [Knauth and Fetzer 2011} Lakew et al. 2014]]
techniques using VM live migration [Clark et al. 2005]] or “scale out” [Lagar-Cavilla et al. 2009]
techniques by spawning replicas locally or in the public cloud [Marshall et al. 2010]. Our work
focuses on a scale-out scenario and enhances prior work to handle cross-data center elasticity, where
VMs can be spawned in multiple data centers. In general, VM-based elasticity is a desirable property
that helps to efficiently manage resources of applications with dynamic workload.

However, application-specific optimizations are often needed, e.g., to avoid high operation
costs [Mickulicz et al. 2013|]. Application-level elasticity has been studied extensively in the con-
text of databases; proposed techniques include the use of live database migration techniques [Das
et al. 2011} [Elmore et al. 2011]] for relational database and stop and migrate techniques [Cooper
et al. 2008] for key-value stores. In addition, [Tsoumakos et al. 2013|] targets NoSQL database and
proposes a framework for providing elasticity of NoSQL clusters using Markov Decision Process.
Performance-aware replication of data in geo-distributed cloud stores has also been studied in this
context [P N et al. 2014]. Other related efforts target specific scenarios for elasticity that include
transparent load balancing [Lim et al. 2010j [Rajagopalan et al. 2013]] by moving per-flow state in
the middle-box or rebalancing data among cloud storage systems.

Leveraging Geo-distributed Clouds. Geographically distributed clouds have become popular and
provide resources to run services in multiple locations. Prior work has looked at how to select data
center locations to optimize cost and network latency. Specifically, [Zhang et al. 2013]] proposes
the use of control and game theoretic models to optimize operation cost given both cloud workload
and price fluctuations. Greening Load Balancing [Liu et al. 201 1] focuses on determining workload
for geographically distributed data centers by considering energy costs. Network aware resource
allocation [Alicherry and Lakshman 2012 that places user requested VMs into data centers so that
the distance between selected data centers are minimized. GeoScale also takes advantage of geo-
distributed cloud locations and selects cloud locations by iteratively assigning and grouping client
workload to their closest locations, avoiding unnecessary resource provisioning.

Model-driven Approaches. Past work on model-driven techniques have focused on clustering
techniques such as k-means [Gmach et al. 2007; |Singh et al. 2010|] or independent component
analysis [Sharma et al. 2008]] to characterize dynamic workload or workload spikes [Bodik et al.
2010], which is then used for providing elasticity. In addition, prior work [Nguyen et al. 2013}
Morais et al. 2013; [Tolosana-Calasanz et al. 2014] also focuses on predicting service performance
and leverages such predictions to provision resources. For example, in AGILE [Nguyen et al. 2013]],
the authors use wavelets that provide medium-term performance predictions; and a black-box per-
formance model that captures the relationship of SLO violations and resource utilizations by fitting
profiling data.

Other model-driven approaches [Gandhi et al. 2014; Malkowski et al. 2011}; [Padala et al. 2009]]
have relied on queueing theory with specific optimizations, such as using multi-model [Malkowski
et al. 2011]] or Kalman filtering [[Gandhi et al. 2014] to provision virtualized resources in the same
data center. Regardless of specific performance models, it is also important to account for poten-
tial performance variations due to shared cloud environments [Tickoo et al. 2010; |O’Loughlin and
Gillam 2014]. GeoScale leverages this past work on model-driven approaches and employs per-site
and per-server queueing theoretic models to capture differences in server capacities across cloud
locations.

Reducing Latency. Intelligent service placement has been studied in the networking context to re-
duce user latency. Most of those approaches place services closer to the end-users to reduce network
latency [Satyanarayanan et al. 2009; |P N et al. 2014; |Content Delivery Network 2013|]. Our focus
is on dynamic capacity provisioning to handle spatial workload dynamics, rather than an intelligent
one-time placement of services. Other complementary approaches to reduce web latency include
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protocol level approaches [Flach et al. 2013]], and application-layer optimizations [Stream Control
Transmission Protocol 2013].

7. CONCLUDING REMARKS

In this paper, we presented GeoScale, a system that provides geo-elasticity to replicable multi-tier
web application in a geographically distributed cloud platform. Geo-elasticity provides an automatic
resource management for applications that experience not only temporal but also spatial workload
dynamics. GeoScale achieves geo-elasticity by tracking an application’s spatial and temporal work-
load dynamics, employing a combination of queueing model-driven proactive provisioning and agile
reactive provisioning, along with pre-copying optimizations to provision server capacity at the clos-
est possible cloud locations to the distributed user base. Our experimental evaluation of the GeoScale
prototype on Amazon EC2 yielded up to a 40% reduction in the 95" percentile response times and
up to a 58% reduction in SLA violations for representative web applications, when compared to
traditional local elasticity mechanisms.

GeoScale’s hybrid provisioning approach allows more agile provisioning experience for cloud-
based applications. This is because by proactively provisioning resources, GeoScale can mask po-
tentially long provisioning time; and by reacting to SLA violations in real time, GeoScale can
make up for under-provisioning caused by prediction errors or flash crowds. As cloud providers
are building more data centers across the globe, it provides GeoScale more opportunities to further
improve SLA compliance. It also brings additional scalability challenges when designing systems
like GeoScale. For example, our current ILP-based geographically provisioning might take hours to
reach an optimized decision with increased number of data center locations. As part of future work,
we plan to explore alternative approaches that present tuneable tradeoffs between provision quality
and decision , as well as to extend GeoScale to handle heterogeneous cloud servers and integrate
horizontal and vertical scaling.

A. SLA-CONSTRAINED SERVER CAPACITY

We model a single cloud server as a G/G/1 queue and use 7', W and X to denote the response time,
waiting time and service time distributions respectively. The application-level SLA y is defined as
a strict upper bound of a high percentile response time. For the ease of illustration, we choose 95
percentile response time. That is, if the SLA y = 2 seconds, the 95" percentile of response time
T, denoted as a7 (95), has to satisfy o7 (95) < 2. Our goal is to derive the amount of requests 4 a
server could process without violating the SLA. More specifically, we are interested in finding the
upper bound of A when the server is experiencing heavy traffic. These Heavy traffic scenario can be
represented as p — 1, where p denotes server utilization.

First, based on Little’s Law, we can represent A = %. We then apply Kingman’s theorem in order
to represent o (95) for heavy-traffic servers modeled as G/G/1 queue. Kingman’s theorem states
that the waiting time W is an exponential distribution with mean E[W] as shown in Equation and
O

_ o240}
EW]= m (®)
Fw(W) = P(W S W)
=1- exp7ﬁw )

where 6 and O'b2 represent the variances in requests’ inter-arrival times and service times; and X
denotes the mean service time. By definition, we have:
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P(T < ar(95))=0.95 (10)
T=W+X (11)
Note that all x from service time distribution X has to satisfy Equation [IT} we then have T ~

W + . Combining Equation [9] to [LT] we have an equation of o7(95) in terms of E[W] and ¥ in
Equation[12]

Ziir (07 (95)—%)

1—exp EW] =0.95 (12)

Applying In operation to both side, we can express a7 (95) with all known parameters as shown
in Equation [I3]

3A(02+07)+2(1—p)x
2(1-p)

To satisfy SLA y, we just need to have ar(95) < y. By substituting Equation |13| to the SLA
constrain, we obtain the upper bound of request rate A as:

OCT(95) =

13)

2, o\
1< {X—FW] (14)

2(y—x)
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