
ZZ

Performance and Cost Considerations for Providing Geo-Elasticity in
Database Clouds

Tian Guo, Worcester Polytechnic Institute
Prashant Shenoy, University of Massachusetts Amherst

Online applications that serve global workload have become a norm and those applications are experienc-
ing not only temporal but also spatial workload variations. In addition, more applications are hosting their
backend tiers separately for benefits such as ease of management. To provision for such applications, tra-
ditional elasticity approaches that only consider temporal workload dynamics and assume well-provisioned
backends are insufficient. Instead, in this paper, we propose a new type of provisioning mechanisms—geo-
elasticity, by utilizing distributed clouds with different locations. Centered this idea, we build a system called
DBScale that tracks geographic variations in the workload to dynamically provision database replicas at dif-
ferent cloud locations across the globe. Our geo-elastic provisioning approach comprises a regression-based
model that infers database query workload from spatially distributed front-end workload, a two-node open
queueing network model that estimates the capacity of databases serving both CPU and I/O-intensive query
workloads, and greedy algorithms for selecting best cloud locations based on latency and cost. We implement
a prototype of our DBScale system on Amazon EC2’s distributed cloud. Our experiments with our prototype
show up to a 66% improvement in response time when compared to local elasticity approaches.

CCS Concepts: •Mathematics of computing→ Statistical paradigms; •Information systems→Mid-
dleware for databases; •Computing methodologies → Modeling methodologies; •Networks →
Cloud computing;

Additional Key Words and Phrases: Distributed Clouds; Database Elasticity; Model-based Provisioning

ACM Reference Format:
Tian Guo and Prashant Shenoy, 2017. Performance and Cost Considerations for Providing Geo-Elasticity in
Database Clouds. ACM Trans. Autonom. Adapt. Syst. XX, YY, Article ZZ (May 2017), 32 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Cloud platforms are increasingly popular for hosting web-based applications and ser-
vices. Studies have shown that more than 4% of Alexa top million websites [He et al.
2013] are now hosted on cloud platforms and these contribute to more than 1% of the
Internet traffic. Cloud platforms come in many flavors. Today’s Infrastructure-as-a-
service (IaaS) clouds support flexible allocation of server and storage resources to their
customers using virtual machines (VMs). Recently Database-as-a-service (DBaaS)
clouds have become popular as a method for hosting databases for cloud applications.
In a DBaaS cloud, a customer leases a database from the cloud provider for storing
and retrieving their data and offloads the tasks of managing and provisioning (“right-
sizing”) the database to DBaaS cloud provider. Since the application provider no longer
needs to deal with the complexity of scaling their database to dynamic application

This is an expanded and revised version of a preliminary paper that appeared at ICAC 2015 [Guo and
Shenoy 2015]. This work is supported by the National Science Foundation, under grant 1345300, grant
1229059 and grant 1422245. Manuscript was received August 16, 2016.
Author’s addresses: Tian Guo, Computer Science Department, Worcester Polytechnic Institute; Prashant
Shenoy, College of Information and Computer Sciences, University of Massachusetts Amherst.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2017 ACM. 1556-4665/2017/05-ARTZZ $15.00
DOI: 0000001.0000001

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:2 T. Guo et al.

Geo-distributed Client Heat Map

Location N

Distributed
DBaaS Clouds

Location 1

DB Servers
Location 2

DBScale

DB Servers

DB Servers

Location N

Distributed
IaaS Clouds

Location 1

Web Servers
Location 2

Web Servers

Web ServersHTTP Requests

D
B Q

ueriesMonitoring Data

Geo-elastic Provisioning

Monitoring Data

Fig. 1: Illustration of using DBScale to manage a multi-tier application. In this example,
the multi-tier application serves different amount of client workloads from different regions. The multi-
tier application has its front-end web servers deployed in distributed IaaS clouds and its back-end
database servers deployed in distributed DBaaS clouds.

workloads, DBaaS clouds simplify the task of building cloud applications. In such a
scenario, a multi-tier web application is built by hosting the front-end tiers on servers
leased from an IaaS cloud, while the back-end database tier of the application is hosted
on a DBaaS cloud. A key benefit of IaaS and DBaaS cloud platforms is their ability to
provide elasticity, where the cloud platform dynamically and autonomously scales the
capacity allocated to the application or database tiers based on observed workload dy-
namics.

A concurrent trend is that today’s cloud platforms are becoming increasingly dis-
tributed by supporting data centers in different geographic regions and continents.
For instance, Amazon’s EC2 and Microsoft’s Azure offer a choice of eleven and sev-
enteen global locations respectively to their customers today. Distributed clouds are
especially well suited for deploying cloud applications that service a geographically di-
verse workload. For such applications, network latency between end users and server
replicas still plays an important role in affecting overall performance [Guo et al. 2015;
Singla et al. 2014]. Therefore, a distributed cloud with a large set of locations pro-
vides the flexibility to deploy application replicas so that users can be serviced from
the nearest cloud replica for the best performance. Studies [Xu et al. 2011] have shown
that such geo-distributed application see geo-dynamic workloads, where the workload
sees both spatial and temporal fluctuations. Thus, in addition to well-known temporal
fluctuations such as time-of-day effects or seasonal fluctuations [Arlitt and Williamson
1997] [Birke et al. 2012], the application sees spatial fluctuations where workload vol-
ume in one geographic region (e.g., North America) fluctuates independently of the
workload volume seen from other regions (e.g., Asia or Europe).

However, existing elasticity mechanisms, in the form of autoscaling within a physi-
cal cloud location boundary, are not well suited for handling spatial fluctuations seen
in today’s geo-distributed applications. The limitations are mainly two-fold. First, local
elasticity mechanisms, when provisioning resources, are constrained to a single cloud
location or a static subset of all available cloud locations. Second, current approaches
are oblivious to the spatial workload dynamics associated with the geo-distributed ap-
plications. For instance, if an application that is deployed in two locations, say North
America and Europe, sees a spatial increase in workload volume in Asia, current elas-
ticity mechanisms will attempt to increase the provisioned capacity in the existing

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:3

locations, whereas the proper response is to deploy new replicas in Asian cloud loca-
tions.

Instead, a different elasticity approach is needed that can handle both the temporal
and spatial variations seen in today’s geo-distributed applications’ workload—we refer
to such an approach as geo-elasticity. A geo-elasticity mechanism handles temporal
changes by varying the provisioned capacity locally and handles spatial changes by
provisioning replicas across regions and at new locations.

In this paper, we explore the problem of designing a geo-elasticity mechanism for
Database-as-a-service (DBaaS) clouds. DBaaS clouds are increasingly geo-replicated
for reasons such as to provide better end-to-end user performances and high availabil-
ity [DeCandia et al. 2007; Sovran et al. 2011; Corbett et al. 2012; Nawab et al. 2015]
With such a mechanism in place, DBaaS provider can provision the right amount of DB
servers in the best cloud locations to avoid violating service level agreements (SLAs)
between DBaaS provider and DBaaS customers—applications that host their back-
ends using DBaaS clouds. Figure 1 presents a high level illustration of how DBScale
interacts with a multi-tier application that is deployed using both IaaS and DBaaS.

We identify four key challenges in designing geo-elasticity for DBaaS clouds. First,
because application database tiers only see workload traffic from front-end tiers but
do not handle end client traffic directly, inferring geographic workload distributions
and associated spatial fluctuations for database servers is more challenging than for
front-end tiers. Second, prior work on dynamic provisioning [Urgaonkar et al. 2005] for
multi-tier applications usually make simplified assumptions about CPUs being bottle-
neck resources. Those approaches may not be well-suited for database tiers because
database can either be compute-intensive or I/O-intensive, or a mix of the two, depend-
ing on database query computational and I/O demands. Third, when a DBaaS cloud
provisions database replicas, the task of maintaining consistency across replicas needs
to be handled. Database consistency is a complicated task, especially in the presence
of WAN replicas [Abadi 2012; Amir et al. 2003]. In addition, consistency requirements
are application-specific and therefore need to be handled differently for different ap-
plications. Finally, because end-to-end client performance depends on both front-end
and back-end provisioning configurations, it is therefore very important to coordinate
between IaaS and DBaaS to agree upon geo-elastic provisioning decisions and policies
such as synchronizing provisioning completion time or using precopying.

Contributions. In this paper, we address the above all four challenges with a
model-driven middleware system called DBScale. DBScale implements an end-to-
end solution that provides geo-elasticity for DBaaS clouds, from inferring dynamic
database workloads of geo-distributed applications to provisioning database replicas
in the best cloud locations. In designing and implementing DBScale, we make the fol-
lowing contributions:

•We propose a regression-based technique that uses the observed geographic distri-
bution of the workload seen by the front-end tier to infer the resulting geographic
distribution of the queries seen by the database tier. This regression model is used
as the basis to predict future spatial workload for geo-elastic provisioning.
•We present a technique that models each database replica as a two-node open queue-

ing network with feedback, with the CPU modeled as a M/G/1/PS queue and the disk
modeled as a M/G/1/FCFS queue. In doing so, our model can effectively identify the
resource bottlenecks that hinder the server response time and provide the basis for
provisioning enough amount of servers without violating TRSLA, response time SLA.
•We analyze the performance and cost trade-offs of database workload assignment

and propose two greedy algorithms that prioritize different objectives within the con-

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:4 T. Guo et al.

DBScale

Geo-Elastic
Coordinator

Data

Workload
Forecaster

Resource
Provisioner

Provisioning
Engine

Geo-elastic Algorithm

Performance
Monitor

Global
DNS

Consistency
Engine

Geo-elastic Actuator

DBaaS
Clouds

Workload Monitor

Workload Data
IaaS

Clouds

Workload Data

Fig. 2: Key components of DBScale. For simplicity, we only demonstrate the design and ar-
chitecture of DBScale’s central controller and omit light-weight daemons that report back workload
and performance data from within DBaaS clouds. Here, arrows with solid head represent control
decisions made by DBScale.

straints of network latency SLA, TNSLA. We also formulate an assignment problem
using quadratic programming that minimizes operation cost.
•We implement a prototype of DBScale on Amazon EC2’s distributed clouds and

conduct detailed evaluations. Specifically, we run our experiments by injecting geo-
distributed workloads from PlanetLab servers to a multi-tier application that are
managed by DBScale in Amazon’s distributed clouds. We compare the effectiveness
of DBScale, in handling dynamic workload, to two other elasticity approaches—a lo-
cal elasticity approach and a distributed caching approach. Our results show a 55%
and a 36% improvement in mean response time when compared to local elasticity and
the caching-based approach. In addition, we also evaluate our models and algorithms
performance by comparing to benchmark measurements and through empirical data-
driven simulations.

2. BACKGROUND AND PROBLEM STATEMENT
In this section, we first provide a background on distributed database clouds and then
describe the application model assumed in our work and the specific problem of geo-
elasticity in DBaaS clouds addressed in this work.

2.1. Distributed Database Clouds.
Our work assumes a Database-as-a-service (DBaaS) cloud that allows application
providers, a.k.a. DBaaS customers, to lease one or more database tenants from the
cloud platform. The DBaaS cloud provides SLAs on performance (e.g., response times)
seen by the application and handles the task of configuring and provisioning suf-
ficient capacity for each customer. Just as Infrastructure-as-a-service (IaaS) clouds
support server instances of different sizes (e.g., small, medium or large servers), a
database cloud also supports different types of database tenants. Small tenants, who
have smaller storage and workload requirements, are hosted using a shared model
where multiple small tenants share the resources of a single physical server. Large
tenants, on the other hand, are hosted using a dedicated model, where each tenant

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:5

is allocated all the resources of a physical server to support larger database or more-
intensive workloads.

The DBaaS cloud itself can be implemented on top of a IaaS cloud where database
tenants are housed in virtual machines (“server instances”) of the IaaS cloud. While
we assume such a virtualized environment for ease of prototyping, our approach could
be easily generalized to non-virtualized setting. We assume that the DBaaS cloud is
distributed and offers a choice of multiple locations to each application provider. Thus,
in provisioning database tenants for DBaaS customers, DBaaS provider may choose a
particular cloud location that is best suited for the application’s needs or have a choice
to a set of data center locations.

2.2. Application Model.
Our work targets at multi-tier cloud-based applications that rely on DBaaS clouds for
backend supports. Our targeted applications should have end-users that are spread
across multiple geographic locations and hence service a geographically diverse work-
load. In addition, these applications not only experience temporal workload variations
such as time-of-day effects, but also spatial variations, where the workload volume
from different regions may vary independently (e.g., due to regional events or regional
differences in the popularity of the application).

One prime example of our targeted applications is multi-tier web applications that
consist of a front-end web tier and a backend database tier. We assume that the front
tiers (HTTP and application tiers) are hosted on servers of a IaaS cloud, while the
backend tier runs on a database in a DBaaS cloud. Both the IaaS cloud and DBaaS
cloud have access to the same set of cloud locations. Another emerging type of applica-
tions is mobile applications. Today’s mobile applications are frequently designed with
cloud backends to share and synchronize data among millions of app users and their
multiple devices. Due to user mobility, spatial workload variations are execrated by
these emerging mobile apps.

Further, such applications are designed to be replicable—that is, each tier can be
scale horizontally by provisioning more replicas. Since the database tier is replicated,
both within a particular cloud location and across locations, maintaining consistency
of backend replicas is an important issue. We assume that consistency policies and
mechanisms implemented by backend tier (and the DBaaS cloud) are dependent on
the application’s needs. In case of predominantly read-intensive database query work-
loads, such as those seen by databases hosting product catalogs of e-commerce store,
a relaxed consistency technique may suffice, where the product catalogs replicas are
updated periodically in batched mode. In other scenarios, where stricter consistency is
desired, database replicas may need to be organized in a master-slave WAN configu-
ration or a multi-master configuration1; these approaches will incur higher overheads,
especially in WAN settings.

2.3. Geo-elasticity.
Consider a distributed DBaaS cloud that hosts the database tier of geo-distributed
multi-tier application as described above. The cloud platform is assumed to provide the
primitives for scaling up or down the number of database replicas of customers’ appli-
cation within a single data center. However, given the geographically diverse workload,
simply scaling the number of replicas at a given location is insufficient; the distributed
DBaaS cloud needs to consider where workloads increase or decrease and decide how
many replicas are needed at each cloud location. Such dynamic provisioning of capac-

1Percona and EnterpriseDB both provide multi-master replication.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:6 T. Guo et al.

ity within and across cloud locations to handle both temporal and spatial workload
fluctuations is referred to as geo-elasticity.

Our work focuses on providing geo-elasticity in a DBaaS cloud while we do not as-
sume any knowledge of provisioning mechanisms used by IaaS clouds that hosts front-
end tiers. However, we assume a cooperative IaaS cloud that is able to incorporate pro-
visioning decisions from a DBaaS cloud. Coordinating provisioning decisions between
front-end and back-end tiers can be beneficial for good end-to-end user performance.
Further, we also assume DBaaS customers specify their desired server types and our
algorithm only considers provisioning additional servers of the same type.

2.3.1. The need for geo-elasticity. A plausible alternative provisioning approach is called
multi-site elasticity—a number of locations are statically chosen by the application de-
veloper and each site independently scales its front and back-end tiers based on the
load seen at that data center. As we showed in our previous work [Guo et al. 2016],
multi-site elasticity only provides suboptimal performance when the application starts
seeing workload from a new region. This is because load is sent to a further data center
until the application developer deploys a new replica at an additional data center. On
the contrary, geo-elasticity will automatically detect this workload change and deploy
a replica automatically at the new location. Moreover, as the number of data center
locations grows—from O(10) to O(100) [Cisco Global Cloud Index 2016; Global Cloud
Infrastructure 2016], it will be cost prohibitive to place a replica at every cloud lo-
cation and optimal selection of locations for multi-site elasticity becomes ever more
complicated. Therefore it is better for the cloud platform to intelligently place replicas
in cloud locations close to the end-users.

In summary, the ability for DBaaS cloud to dynamically varying and judiciously
selecting the set of data center locations to host database replicas is not only critical for
delivering performance guarantee, i.e. SLA, but also beneficial from cost perspective.
Simply provisioning database replicas in all available data centers might not improve
query response time, but might even deteriorate it as shown in Section 8.5. This is
because database replicas need to synchronize states among each other—introducing
extra network delay to the response time.

2.4. Problem Statement.
In this paper, we are looking at the research problem of dynamically provisioning
database replicas for multi-tier applications in distributed DBaaS clouds with mini-
mal cost, without violating SLA.

Specifically, given a DBaaS cloud that has access to n data center locations Lk, and
a cloud-based multi-tier application that serves client workload from m geographic
regions Lc, we want to figure out the corresponding database workload dynamics,
λ = [λ1, λ2, . . . λm], for each provisioning period. Here, λ is a global database work-
load vector and each element λi represents peak query rates from ith client location.

After obtaining λ, we want to assign those workload to cloud locations that satisfy
our objective whether it is performance or cost, given network latency service level
agreement, TNSLA. Generally speaking, we will have more client geographic regions
than data center locations—that is m > n. Therefore, the above assigning process ag-
gregates client workload into n cloud locations and yields workload ω = [ω1, ω2, . . . ωn],
where ωj represents workload that needs to be provisioned for jth cloud.

Then we want to determine D = [d1, d2, . . . dn], number of database replicas to pro-
vision for each cloud location, based on server response time service level agreement
TRSLA. Let d′j denotes the number of database replicas already existing in cloud j, where
d′j ≤ 0. By comparing dj with d′j for each cloud location j, we will decide to provision
(or deactivated) | dj − d′j | replicas.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:7

2.5. Overview of our approach—DBScale
Figure 2 shows the high level design of DBScale that interacts with both IaaS clouds
and DBaaS clouds. For completeness, we also depict a global DNS that should be noti-
fied whenever client-facing servers’ IP addresses change. Note that such DNS lookup,
with policies such as Latency Routing Policy [Amazon Route 53 2015], allows end user
requests to be sent to the frontend replica that is hosted in the closest data center,
from whom the database queries are sent to the closest replica. Therefore, we do not
include time overhead associated with client-side DNS lookup in our SLA considera-
tion. Similarly, frontend replicas also rely on DNS lookup to establish connections with
the database replicas. However, slower DNS lookups only occur when there is no lo-
cal database replicas inside the same data center as the frontend; and any potential
performance overhead is amortized across long-lived database connections.

DBScale is responsible for dynamically provisioning databases in DBaaS clouds
to handle temporal and spatial workload variations. Specifically, DBScale illustrated
here is a logically controller that monitoring/analyzing global workload, deciding how
to assign client workload to cloud locations, coordinating these decisions with IaaS pro-
visioning engine, and provisioning/configuring database servers. However our choice
of centralized design does not have obvious impact on scalability. DBScale can easily
scale up or out to support an increasing number of DBaaS customers. For each indi-
vidual DBaaS customer, the time it takes for DBScale to make provisioning decision is
affected by the number of actively used data centers. However, it is hardly going to be
the bottleneck given the provisioning frequency, in the order of hours.

In Figure 3, we also provide a typical DBScale workflow to proactively provision
database servers based on collected workload and performance data. For each pro-
visioning period, DBScale performs the following four actions: training, predicting,
aggregating, and provisioning in sequence to generate provisioning decisions for each
DBaaS clouds customer. For the rest of design-related sections, we explain in detail
based on the above workload about monitoring and predicting geo-dynamics database
workload in Section 3; handling CPU-intensive and I/O-intensive database workloads
with queueing-based capacity model in Section 4; figuring out where to provision
database servers based on latency-first and cost-first greedy algorithms in Section 5
(and a Quadratic Programming formulation in Appendix A.1); and providing a step-
by-step procedure to provide geo-elastic database clouds in Section 6. Implementation
details of DBScale can be found in Section 7.

3. GEO-DYNAMIC DATABASE WORKLOAD: WHERE AND HOW MUCH?
In this section, we look at how to obtain database workload dynamics λ =
[λ1, λ2, . . . λm] for each provisioning period. To do so, we need to be able to group queries
to any one location j defined in Lc based on network proximity. However, queries are
not directly associated with their originating clients—we do not know from which
client location queries are generated. This is because client requests are first routed
to web servers who then issue queries on behalf of clients. Therefore, the relationship
between each query and its originating location is obscured by web servers.

One way to overcome this challenge is to define client regions Lc to be the same as
IaaS cloud locations. Assuming IaaS has access tom′ locations and clients are routed to
the closest location among m′ locations. By aggregating and analyzing database query
logs from all active database servers, we can assign queries to IaaS cloud locations
based on web server IP addresses. This way, even if we don’t know the relationship
between individual query and its originating client, we obtain a coarse grained λ by
using IaaS cloud locations as proxies—that is, database workload obtained using this
approach is only reflecting spatial variations, if any, of front-end tier.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:8 T. Guo et al.

Time

Time
W

eb

Se
rv

er
Da

ta
ba

se

Se
rv

er

Regression
Models

W
eb

Se

rv
er Location 1

Location 2 Da
ta

ba
se

Se

rv
er Location 1

Location 2

Geo-elastic
Algorithms

Location 1

Da
ta

ba
se

Se

rv
er

Capacity
Models

CP
U

Time Time

Time

Time

I/O

+ +

+

Training

Predicting

Parameterizing

Aggregating

Provisioning

Location 1
DB Servers

Location 2

⓵ ⓶ ⓷

⓹ ⓸
Fig. 3: Typical workflow of DBScale. We generalize DBScale’s actions into four categories:
training, predicting, aggregating and provisioning. In this paper, we take model-driven approaches
using both regression and queueing models to estimate database workload and database server
capacity. For choosing the best cloud locations, we use insights gained from linear programming
formulation and a threshold-based greedy algorithm.

... ...

�m

mP
j=1

�j

IaaS Clouds

�2

�1

�m

... ...
Web Server

Web Server

... ...

�1

�2

... ...

DBaaS Clouds

DB Server

DB Server

(a) A regression-based model for HTTP workload
γ, and database workload, λ.

Database Server

CPU I/O
pio

1 � pio

�

Queue Queue

(b) A two-nodes queueing-model for a
single database server.

Fig. 4: Model-driven geo-elastic approaches. We model the relationship between front-end
requests and database queries using regression-based models, and leverage these models to predict
temporal and spatial database workload. For estimating a single database server’s capacity at a
specific, we model the server as a two-node open queueing network.

However, the effectiveness of the above approach depends largely on existing IaaS
locations and whether IaaS employs geo-elastic provisioning. Currently, the number of
IaaS cloud locations m′ is in the low tens and therefore they might not be represen-
tative for a global workload distribution. If IaaS clouds only provision using a subset
of m′ locations, it will further reduce the usability of the above approach. That is, we
will not be able to distinguish queries from Europe or US East if IaaS only provisions
web servers in US East data center. In addition, this approach lacks the flexibility to
produce λ for arbitrary client locations Lc, either in city, state or country levels. Such
flexibility can lead to fine granularity client workload information that can result in
better workload assignment decision as described in Section 5.

Given the limitations of above approach, we propose an effective regression-based
approach that can produce database workload distribution λ with configurable preci-
sions, using logs collected from both IaaS and DBaaS clouds.

3.1. Regression-based Workload Prediction
In this section, we show how to obtain database query rate λ using a regression model
that captures the relationship between λi and web request rate γi, with the help of∑n
j=1 λj . In Figure 4(a), we show the interactions between variables that can be ob-

tained directly using available logs (in green) and unknown variable (in red). Next, we

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:9

first explain how to obtain γ and aggregate query rate
∑n
j=1 λj , and then introduce the

regression model.
To obtain γ, we first aggregate front-end request logs from all cloud locations; the

request logs are assumed to include at least a time stamp and the end client’s IP
address. We then use an IP Geolocation technique2 to determine the originating client
location of each request. Given client locations Lc, all requests are then mapped to
one and only one location in Lc that is closest. The use of IP Geolocation allows us to
approximate network latencies between end clients and cloud locations with physical
distances, and thus provides an intuitive approach to pinpoint the closest data center
to end client as well as the flexibility to cluster end users with different granularities.

We count the number of requests that are mapped to each client location in Lc.
For each client location i, we group requests by their time stamps, and calculate the
request intensity for specified time unit. At the end of this process, we will obtain
γ = [γ1, γ2, . . . γm] that represents the peak web workload from each client location i.
Similarly, we can process all database logs and obtain database query rates from each
IaaS clouds and subsequently the total query rates

∑n
j=1 λj .

For a specific application, the number of database queries triggered by front-end re-
quests might vary depending on the types of requests. For example, a request to search
for the best selling products will have different database patterns than a request to
finish placing order. Even so, it is still safe to assume that each front-end request will
trigger one or more database queries—we model this relationship with λ = αγ + β
where α captures the linear relationship and β is an error term. Further, to capture
the potential regional effect caused by different client workload pattern, we use linear
models with different parameters (αi, βi) to model the relationship between front-end
requests and the corresponding database queries from each client location.

λi = αiγi + βi, i = 1, 2 . . . N (1)

Note we can’t obtain query rate λi by processing logs without knowing how clients
are mapped to IaaS cloud locations. Therefore, we can’t solve (1) directly. However,
relying on the fact that requests generated by all client locations are eventually con-
tributing to the amount of database queries, we have

n∑

j=1

λj =

m∑

i=1

(αiγi + βi)

= α1γ1 + α2γ2 + . . .+ αmγm +

m∑

i=1

βi

= α1γ1 + α2γ2 + . . .+ αmγm + β.

Here
∑n
j=1 λj is the total database queries aggregated from all database repli-

cas in Lk. For each provisioning period of length E, we prepare a data set{
(
∑n
j λj)e, (γ1)e, (γ2)e, . . . (γm)e

}E
e=1

following above procedures. To find a model
(α1, α2, . . . αm, β) that best explains these E data points, we use Least Squares Re-
gression3 to minimize the sum of squared residuals

2IP Geolocation is a technique that infers user’s geographic location from IP address. We use MaxMind
GeoIP2 [Maxmind GeoIP Service 2016] for this task.
3Other regression techniques could be applied here as well, such as robust linear model with Huber loss
function or TukeyBiweight.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:10 T. Guo et al.

min
α1,α2,...αm,β

E∑

e=1

ε2t , (2)

where εt = α1γ1 + α2γ2 + . . .+ αmγm + β −∑n
j λj .

By solving Equation (2), we are only rewarded with a collective value β. To obtain
{β1, β2, . . . βm}, we use a weighted function (3) that distributes β to βi based on cor-
responding workload portion—the more requests from a client location i, the more
weight we assign to βi.

βi = β
γi∑m
i=1 γi

(3)

Combining (2) and (3), we obtain m linear regression models (αi, βi) for each client
location i and can use them to estimate the number of queries λi based on Equa-
tion (1). To be more specific, to predict the number of queries λi from location i at
time E + 1, we first take a series of M data points [(γi)E−M , (γi)E−M+1, . . . (γi)E] and
use ARIMA models [Box and Jenkins 1990], or any other standard time series predic-
tion techniques, to predict (γi)E+1. Then by substituting predicted front-end requests
(γi)E+1 into ith client location’s regression model, we get (λi)E+1 = αi(γi)E+1 + βi.
We repeat the above steps for all m client locations and eventually obtain (λ)E+1 =
[(λ1)E+1, (λ2)E+1, . . . , (λm)E+1], the database query distribution for time E + 1.

4. PROVISIONING BASED ON SLA-BOUNDED DATABASE CAPACITY
To provision enough database servers to handle query workload, we need to have a
way to estimate how many queries each database server can handle without violating
service level agreement (SLA). One approach is to gradually increasing realistic query
workload intensity until server response time is violated. The maximum number of
queries the database server can sustain is then be used as server capacity. However,
this approach might be less desirable because it requires offline profiling and more
importantly, it heavily relies on having perfect knowledge of database workload.

Therefore, we resort to queueing theory to estimate capacity online. In addition, in
most scenarios, SLAs are specified as a high percentile of response time distribution.
Queuing theory also helps us reason about the tail behavior of the query service time
distribution. Specifically, by using queueing models, we can analyze the response time
distribution and obtain tail behavior, and compare it with the pre-specified SLA to
obtain server capacity.

4.1. Queueing-based Capacity Estimation
Most prior work [Urgaonkar et al. 2005; N. Bennani and A. Menasce 2005; Villela
et al. 2007] on using queueing-based models to perform dynamic resource provision-
ing only focus on estimating capacity for front-end tiers and assume CPU to be the
bottleneck resource. Such approaches might not be ideal for database tiers because
databases may need to serve queries that are either CPU-intensive or I/O-intensive,
or a mix of both. To account for both resource impacts’ towards query response time,
we present a database-specific queueing-based model that keeps track of both CPU
and I/O utilizations. Note, we assume front-end servers will send queries directly to
individual database servers—these database servers do not share a centralized queue
and therefore are modeled individually.

Specifically, we model the database replica (on a dedicated host) as a two-node open
queueing network with feedback, where the CPU is modeled as a M/G/1 processor shar-

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:11

ing (M/G/1/PS) queue and the I/O device as a M/G/1 first come first serve (M/G/1/FCFS)
queue as in Figure 4(b). Here, we model the arrivals of external queries as a Poisson
process with average rate of λ. Immediately following this, queries arrival at CPU and
I/O also satisfy poisson distribution with λcpu and λio.





λcpu =
λ

1− pio
(4a)

λio =
pio

1− pio
λ (4b)

Here, a query arriving at a database server will first be added to the CPU queue.
When the query departs from CPU, it will either leave the database server with prob-
ability 1−pio or continue its processing by joining I/O queue with probability pio—that
is, pio is the query visit ratio to I/O. In a high level, a query might alternate between
CPU and I/O multiple times before a response is generated.

By modeling queries going through both the CPU and I/O, this two-node queue-
ing network is able to factor in both CPU and I/O’s contributions in affecting query
response time. Let us denote query response time using T , the mean response time
E[T] of database queries is then the sum of time spent in CPU and I/O, i.e., E[T] =
E[Tcpu] +E[Tio]. We use a recent result from a queueing literature [Boxma et al. 2005]
that provides approximation for both E[Tcpu] and E[Tio].





E[Tcpu] =
s̄cpu

(1− pio)(1− ρcpu)

E[Tio] =
pio

1− pio
[s̄io

1− ρio
+
p(s̄

(2)
io − 2s̄2io)

2(1− ρio)
λ
]
,

(5)

where s̄cpu and s̄io denote average service time of CPU and I/O; ρcpu and ρio denote
average utilizations of CPU and I/O; s̄(2)io is the second moment of the service time
distribution of I/O.

Now, given a pre-specified SLA between DBaaS and database customers in the form
of 95th percentile response time TRSLA, we need to satisfy the constraint αT (95) < TRSLA.
Here αT (95) denotes the 95th percentile of response time T . If we assume T satisfies
an exponential distribution,
αR(95)

P
(
T ≤ αT (95)

)
= 1− e− 1

E[T]
αT (95), (6)

based on the definition of cumulative distribution function. Therefore, we have
e−

1
E[T]

αT (95) = 0.05 and by taking ln of both sides,

αT (95) = ln 20E[X] ≈ 3E[X] (7)

Given the relationship4 (7) and the SLA constraint, we then have E[Tcpu] + E[Tio] <
TRSLA

3
. By substituting (5) into the previous inequality, we obtain an upper bound on the

4For a general distribution, we can use Markov Inequality to obtain αT (95) ≤ 20E[T] and follow the same
steps to obtain a bound on αc.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:12 T. Guo et al.

maximum query rate λc that can be handled by a single database server at a specific
cloud location violating the SLA TRSLA:

λc ≤

2TRSLA
3

(1− p)(1− ρio)− 2s̄cpu
1− ρio

1− ρcpu
− 2ps̄cpu

p2(s̄
(2)
io − 2s̄2io)

. (8)

λc ≤

SLA

3
(1− p)(1− ρio)− 2x̄cpu

1− ρio
1− ρcpu

− 2px̄cpu

p2(x̄
(2)
io − 2x̄2io)

(9)

4.2. Obtaining Model Parameters
Here, we explain how to obtain all model parameters for estimating E[T] either by di-
rect measurements or reasonable approximations. First, we need to empirically mea-
sure the CPU utilization, I/O utilization (using Linux tools such as sysstat) as well as
per-query log that includes query timestamps and query execution time(by turning on
MySQL slow logging and setting the long query time to 0 to record every query exe-
cuted). We can directly estimate ρcpu from CPU utilization logs at a predefined time
granularity, database query arrival rate λ by processing the per-query log and s̄io and
λio from the I/O utilization log. Based on (4b), we can estimate pio by substituting
λ and λio. Since we do not have easy access to s̄cpu and ρcpu, we approximate these
two parameters using the Little’s Law [Little 1961]. Specifically, s̄cpu = ρcpu

1
λcpu

and
ρio = λios̄io where we obtain λcpu using (4a). Note that these are overestimations due
to extra logging overhead and resource interference—that is, we make conservative
estimates of λc. Finally, to estimate database server capacity for a new datacenter lo-
cation, we use the average of measured statistics across all available data centers as
an initial approximation.

5. NETWORK SLA CONSTRAINED WORKLOAD ASSIGNMENT
In this section, we look at where to provision server resources for client workload
λ = {λ1, λ2, . . . λm} to satisfy TNSLA, 95th percentile network latency. Without loss of
generality, we normalize λ with server capacity λc from (9) and obtain a new normal-
ized workload vector

λN = {λN1 , λN2 , . . . λNm}, λNi =
λi

λc
. (10)

Effectively, dλNi e represents the number of servers needed for client location i. Let
us define χij as the fraction of client workload λi that is assigned to and provisioned in
cloud location j. Here χij ∈ [0, 1]. An eligible assignment matrix χm×n is one that sat-
isfies TNSLA. Given the assignment matrix χ, we can express the normalized database
workload for cloud location j

ωj = χ1jλ
N
1 + χ2jλ

N
2 · · ·+ χmjλ

N
m

=

m∑

i=1

χijλ
N
i . (11)

Here, the number of servers that need to provision for cloud location j is then dωje.
We define a cost and performance metrics as following and use them as guidelines to
evaluate the effectiveness of eligible assignments χ.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:13

Cost Analysis. We consider three different cost aspects in calculating the operational
expenditure (OPEX) of serving λ workload for the next provisioning period (V hours).
Our cost analysis is based on current commercial cloud pricing models, specifically, we
use Amazon’s model as a concrete example. The first cost is hourly cost cs for renting
server resources. Therefore, the total rental cost is Cs = csdωeV , proportional to the
number of servers and renting time.

The second cost we consider is data storage cost. The storage need at each server
is defined as a continuous random variable D. We denote the database size at the
beginning of each provisioning period as dDB and the probability of inserting a new
data entry as pins. The size of new data entry is denoted with a continuous random
variable U and we assume knowledge of E[U]. Therefore, the expected storage need of
a server at vth hour is E(D | V = v) = dDB +λcpinsE[U]v. Let us define cd as the hourly
cost for storing unit amount of data. Thus, the total storage cost across all servers is
Cd =

∑V
v=1 E(D | V = v)dωecd.

The last cost we consider is the cost for transferring data. We define a continuous
random variable R to express the size of outbound Internet traffics for each server.
The expected data transfer for vth hour in one provisioning period is E(R | V = v) =
λcE[U]v. Let us define ct as the hourly cost for transferring unit amount of data, we
can then express the total transfer cost as Ct =

∑V
v=1 E(R | V = v)dωect. In all, by

combining all three cost components, we have the formula to calculate cost to serve ωj
workload at cloud location j

C(ωj) = Csj + Cdj + Ctj . (12)

Performance Analysis. We are interested in analyzing the achieved network latency
between client and database servers. To do so, we record latency values between com-
municating client and server and obtain the true network latency distribution. This
type of application-level measurements provide good estimates for all individual la-
tency pairs. However it is excessive for our use cases and it might not always be feasi-
ble. Instead, we approximate the true distribution with TN = {(Aij , nij) | ∀i ∈ Lc,∀j ∈
Lk} where nij denotes the number of occurrences of latency Aij between client location
i and cloud location j. In essence, TN is a multiset and each element Aij has multiplic-
ity nij . TN is a reasonable approximation for targeted network latency because client
location i represents a cluster of clients from nearby geographic locations.

5.1. Greedy Algorithms
Next we describe two greedy algorithms that focus on minimizing either network la-
tency or provisioning cost.

Latency-first Greedy. We first sort all client locations Lc based on their workload
intensity in descending order. For each client location j, we first find the set of eligible
cloud locations Si = {j | Aij ∈ [0, TNSLA]}. That is, a cloud location j is said to be eligible
for client location i if Aij , the network distance between these two locations is smaller
than TNSLA. Note that, Si 6= ∅,∀i based on our assumption of TNSLA.

We then assign workload λi from client location i to the closest cloud location

Olati = arg min
j∈Si

Aij ,

if there are enough resources. Otherwise, we move to the next closest cloud location in
Si until we successfully acquire an eligible cloud location. We repeat the above process
for all client locations Lc and eventually reach a valid assignment χlat. For simplicity,

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:14 T. Guo et al.

we assume the total resources from all eligible cloud locations are sufficient to satisfy
the demand of workload λ. Based on χlat, we can express the aggregate workload for
each cloud location and the associated cost and network latencies.

ωlatj =

m∑

i

λNi 1{Olati = j}, ∀j ∈ Lk (13)

Clat =

n∑

j=1

C(ωlatj) (14)

TNlat = {(AiOlat
i
, λi) | ∀i ∈ Lc}. (15)

Cost-first Greedy. Observe that we might get a cheaper assignment than latency-
first algorithm by considering the cost differences between different cloud locations, as
shown in Figure 5. Based on this observation, we propose the cost-first greedy algo-
rithm that assigns client workload to the cheapest eligible cloud.

Instead of choosing the closest available cloud location, we choose the cheapest lo-
cation Ocosi = arg min

j∈Si

C(λj). This yields a different assignment matrix χcos that is

associated with

ωcosj =

m∑

i

λNi 1{Ocosi = j}, ∀j ∈ Lk (16)

Ccos =

n∑

j=1

C(ωcosj) (17)

TNcos = {(AiOcos
i
, λi) | ∀i ∈ Lc}. (18)

Discussions. Note neither greedy approaches, when choosing the cloud location for
client workload, consider the existing client assignment. Thus, we might end up pro-
vision n − 1 extra servers than we should have for workload λ. This is because in the
best case scenario, we only need to provision a total of d∑m

i=1 λ
N
i e—that is, client work-

load is aggregated perfectly. While in the worse case scenario, we end up provision one
extra server for every cloud location to handle ωj − bωjc fractional of workload.

To further reduce the cost overhead, we include a quadratic programming (QP) for-
mulation in Appendix A.1. But in practice, QP formulation might not be desirable
due to limited benefits and time complexity. Specifically, the potential cost saving is
bounded by the cost of renting n − 1 servers. In current pricing models, QP formu-
lations do not have effect on reducing either storage or bandwidth costs. When the
number of cloud locations is reasonably small compared to provisioned servers, the
saving of QP is negligible. As the number of cloud locations grows, the time complex-
ity of solving this QP increases significantly. This makes it impractical as an online
provisioning solution.

6. PUTTING IT TOGETHER
DBScale combines regression-based workload prediction, queueing-baed capacity es-
timation and greedy workload assignment algorithms to implement geo-elasticity for
DBaaS, as summarized below. DBScale periodically involves the following four steps,
e.g. every day, or when SLA s are violated.

Step 1: Where to provision? DBScale obtains database workload distribution λ from
all m client locations using regression-based prediction model described in Section 3.1.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:15

Then, DBScale uses one of the algorithms from Section 5 based on customer’s speci-
fication to generate workload assignment matrix χm×n—each entry χij specifies how
much workload from client location i is to be assigned to cloud location j. Last, DB-
Scale figures out workload to be provisioned for cloud locations, ω̂ = λ1×mχm×n. Those
cloud locations with non-zero ω̂j are chosen for provisioning for the next period.

Step 2: How many resources to provision for each location? DBScale first parame-
terizes queueing-based capacity model, as described in Section 4, and then computes
the maximum query rate λc that a single replica can handle without violating SLA
TRSLA. Given the amount of query workload ω̂j a cloud location j is assigned for next
provisioning period, DBScale then calculates the number of replicas dj = d ω̂j

λc e. If the
number of replicas di differs from the value d′i computed in the previous time interval
(i.e. current provisioning), |di − d′i| more replicas need to be provisioned or deactivated
at this location. If d′i = 0, this indicates that location i has been newly chosen to provi-
sion database replicas.

Step 3: Coordinating with front-end tier. DBScale coordinates with front-end tier
in order to enforce good end-to-end client performance through and especially after
provisioning process. First, DBScale learns about the current configuration of front-
end tier and any upcoming provisioning activities and uses such information to refine
its provisioning policy. For example, if front-end tier decides to place a web replica at
a new cloud location, DBScale needs to evaluate this decision in combination with its
plan to make sure no SLAs are violated. Next, DBScale informs front-end tier about its
provisioning plan and configuration such as whether snapshots are pre-copied. During
provisioning, DBScale periodically updates front-end tier about its progress so as to
synchronize provisioning completion time.

Step 4: How to provision database replicas? DBScale starts provisioning database
replicas by first making a hot backup from an existing up-to-date replica using Xtra-
Backup [Percona Xtrabackup 2015], a hot backup tool for MySQL database. If a full
backup was created and archived in the destination clouds already, DBScale will only
request for an incremental backups that contains updated data. The hot backup tool
produces a consistent point-in-time snapshot of the database without interrupting nor-
mal database processing at that replica. DBScale then transfers the snapshot to a
DBaaS cloud server that will host the new replica. In the case where a new cloud
location is chosen, the snapshot is transferred over WAN to this site. After transfer-
ring, DBScale uses the hot backup tool’s crash recovery feature to load the snapshot
into the database. DBScale supports two different modes to bring database replicas
up-to-date, an offline approach and an online approach. If any updates are made to
the database replica in the meantime, DBScale uses an offline approach that acquires
a read-lock on current replicas, fetches write queries and applies them to the newly
provisioned replica(s). An alternate online approach is to make the new replica a slave
and have it receive updates from an existing master (while this approach is suitable for
master-salve configurations within a data center, doing so will incur higher overheads
for master-slave configuration that run over WAN).

7. DBSCALE IMPLEMENTATION
7.1. Implementation Overview
We have designed and implemented DBScale as a middleware for managing geo-
elasticity in DBaaS cloud. Our DBaaS cloud is built on top of Amazon EC2’s distributed
clouds that have tens of cloud locations across the globe. To construct our DBaaS cloud,
we first lease servers from distributed IaaS cloud and then run database replicas
on those IaaS servers. Our prototype is based on the transactional MySQL database

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:16 T. Guo et al.

EBS Storage Type(GB-month) Max($) Min($) Std. Dev. ($)
General purpose SSD 0.19 0.10 0.03

Provisioned IOPS SSD 0.24 0.13 0.03
Throughput optimized HDD 0.09 0.05 0.01

Cold HDD 0.05 0.03 0.01
Snapshot (to S3) 0.13 0.10 0.01

EC2 Data Transfer (GB) Max($) Min($) Std. Dev. ($)
Outbound Internet Traffics 0.25 0.09 0.05

(a) Storage and data transfer Costs.

S M L XL 2XL 4XL 8XL

Server Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

P
e
r

C
o
re

 C
o
st

 (
$

)

(b) Server costs.
Fig. 5: We use Amazon’s distributed clouds as a case study, and analyze price differences exhibiting
in different cloud locations for storage, data transferring and servers. For example, one can save up
to 24% in renting 4xlarge server by choosing a cheaper data center.

platform—that is, database tenants are provided as MySQL databases through the
DBaaS cloud.

DBScale is implemented in Python and consists of two logical components. The high
level architecture of DBScale is shown in Figure 2. For simplicity, we only include
the architecture of the central controller and omit showing daemons that run on each
server inside DBaaS cloud. The central controller, by default, runs inside Amazon’s
US-east data center in Virginia. DBScale can also be configured to run its central
controller in a new cloud location if it yields smaller communication overhead to all
daemons.

Light-weight daemons that run inside all database servers are collecting required
data, e.g. workload and resource utilizations, and sending these statistics periodically
to the central controller. Specifically, resource usage statistics at the database servers
hosting the tenant replicas are measured using sar and iostat utilities, which yield
the database server’s CPU and I/O utilization. Note, the frequency of communicating
with the central controller depends on whether a reactive threshold is triggered. If
so, daemons on these overloaded database servers will immediately notify the central
controller. Otherwise, frequencies for each server are chosen uniformly from [ψ, 10ψ]
where ψ denotes the default provisioning frequency. If frequency is set at 10ψ, dae-
mons will contact the controller ten times within a provisioning window. This simple
approach is used to avoid processing bottleneck in a single controller by effectively
spreading processing workload into different time slots.

7.2. Implementation Details
Next, we describe implementation details for individual function modules of DBScale’s
central controller. These modules can be roughly divided into four interconnected
pieces based on their functionalities. The interaction details between different mod-
ules can be found in Section 2.5.

First, workload monitor and performance monitor modules are responsible for gath-
ering workload statistics and resource utilization from both IaaS and DBaaS clouds.
We assume application developers who host databases in our DBaaS cloud expose APIs
for DBScale to query the workload statistics of the front-end servers hosted in IaaS
cloud. Using these APIs, we assume DBScale at least have access to aggregated re-
quests per second for each cloud location. In an ideal scenario, workload monitor can
gather web server logs directly from front-end replicas at each location and aggregates
them, as discussed in Section 3, to analyze geographic distributions of client work-
load. DBScale can benefit from such fine granularity data and therefore make more
informed provisioning and coordinating decisions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:17

Moreover, to collect data from DBaaS cloud, both monitor modules listen on a well-
known port and collect data sent from daemons described above. Database workload
information can be extracted from database query logs. Each query entry at least con-
tains a query arrival time stamp, a requester’s IP address, and a query execution time.
Performance data can also be extracted from CPU and I/O logs, currently represented
as averages over a 5-seconds interval. All the workload and performance statistics are
written to a SQLite database sequentially as they are processed. We use ROWID for pri-
mary key, and create additional three indexed columns, i.e. data center location, server
identification number and timestamp to represent each data point’s attributes.

Next, workload forecaster and resource provisioner modules read data from SQLite
database to construct a regression model and an ARIMA-based time-series model us-
ing Python’s StatsModels library, and to parameterize queueing models. These models
are maintained and updated automatically based on data from a predefined historical
time window. Currently, we set the historical time window for ARIMA model as one day
and for the other two models as entire data history. Such choices are only based on our
limited experiences with benchmark experiments. It would be ideal to select window
sizes for each model based on prediction accuracies. In addition, we also implement
our two greedy algorithms in the provisioner that select cloud locations either based
on network latencies to clients or server resource costs. Users can specify either la-
tency or cost as a priority for assigning client workload. In all, DBScale combines these
models and greedy algorithms to make geo-elastic provisioning plans periodically.

Then, provisioning engine takes a provisioning plan that specifies the number of dif-
ferent servers required for each cloud site, and makes adjustment through Amazon
EC2’s APIs based on existing server resources. After each database server is up and
running, we then use database hot backup tools to extract archived snapshots and load
them into new replicas. Until now, provisioning engine has successfully prepared new
database replicas, but these new database replicas might have obsolete data compared
to the up-to-date database servers. The amount of such obsolete data depends on how
many write requests have been committed since the snapshot is taken. Before handing
them over to consistency engine, our provisioning module needs to contact one of up-
to-date servers to fetch the committed transaction log, and replay these transactions
on new replicas. Afterwards, our consistency module chooses one of the two currently
supported modes, i.e. an offline batch mode and an online master-slave mode, depend-
ing on application’s specific needs to synchronize new database servers. For example,
when used for holding data such as product catalogs that see largely read queries, a
simple batched update approach may suffice. Specifically, in the batch mode, we up-
date all database replicas in a batch during the scheduled maintenance window. In the
master-slave configuration, replicas are configured as either master or slave and write
queries are only sent to the master who then relay to all the slaves. Our consistency
engine picks databases inside a cloud site that has relatively low propagation delays to
all other cloud sites, e.g., a geographical central location, and configure them as master
databases.

Last, geo-elastic coordinator acts as a bridge between IaaS and DBaaS, and notify
both entities about any topology changes due to provisioning. The goal of our coordina-
tor is to allow DBScale to make informed provisioning decisions, in conjunction with
front-ends. As we show through a case scenario in Section 8.3.2, uncoordinated pro-
visioning between IaaS and DBaaS might lead to undesired penalty spikes. To avoid
scenarios such as running web and database servers in two cloud sites that are far-
away, we incorporate a policy that always enforces provisioning database servers to
“follow” the front-ends. And ideally, with cooperation from IaaS cloud, we can also syn-
chronize the finish time of provisioning both tiers by delaying web server provisioning.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:18 T. Guo et al.

In summary, with the central controller taking care of different aspects of geo-elastic
provisioning and distributed daemons collecting required data, DBScale thus proac-
tively provisions database servers in accordance to the temporal and spatial client
workload as well as front-ends’ topology changes in the context of distributed clouds.

8. EXPERIMENTAL EVALUATION
We use end-to-end experiments and empirical-driven simulations to quantify DB-
Scale’s performance. First, we evaluate the efficacy of our models and algorithms. Then
we demonstrate performance improvement using geo-elasticity and compare DBScale
to a caching-based approach. Last, we measure consistency overhead of provisioning
database servers using DBScale.

8.1. Experimental Setup
Distributed Clouds: We use Amazon EC2’s distributed cloud that spans more than
ten global data center locations as the infrastructure support. We use EC2 to emulate
IaaS clouds and create a DBaaS cloud by running MySQL database engines on rented
IaaS servers. We use elastic block stores (EBS) for hosting virtual machine images
and database data. Further, we use Amazon’s current pricing models (Figure 5 lists an
exemplary summary) as a basis for our simulations.

Application appliance. We use TPC-W [The ObjectWeb TPC-W implementation
2005], a transactional web benchmark, as our multi-tier application. This java version
of TPC-W consists of a front-end that runs on Apache Tomcat and a backend database
that runs on MySQL. We create separate appliances, virtual machine images, for its
two tiers; unless specified otherwise, each database is configured with 10GB data. Both
tiers of TPC-W are assumed to be replicable both within and across EC2 cloud loca-
tions. All the front-end VMs were running inside IaaS cloud and the back-end ones
are running in DBaaS cloud. DBScale manages the replicas of each database tenant
in DBaaS cloud and coordinates with an IaaS cloud manager.

Distributed Clients: We run the emulated clients on PlanetLab nodes that are glob-
ally distributed. We choose around one hundred PlanetLab locations from North Amer-
ica, Europe, and Asia that were accessible at the time the experiments were performed.
In our experiments, we use three workload mixes that represent different compositions
of read and write requests, i.e., default browsing and ordering workload from TPC-W,
and a modified read-only browsing workload.

For each experiment run, we have TPC-W clients running on PlanetLab’s nodes from
different locations to send HTTP requests to the emulated online bookstore; requests
are routed to the closest front-end replicas using a custom DNS-based load redirection.
We warm up each replica for five minutes before starting to collect data.

8.2. Geo-elastic Models and Algorithms
In this section, we evaluate all the models and algorithms used by DBScale as a basis
to provide geo-elasticity.

8.2.1. Regression Model Prediction. This experiment evaluates the effectiveness of the
regression model proposed in Section 3.1 to predict database workload for distributed
clients. We set up front-end web and back-end database servers in three cloud loca-
tions, i.e., California, Virginia and Ireland. For each cloud location, we then run TPC-
W clients in a PlanetLab node that has a small network distance in terms of round
trip time. Clients only send their requests to the pre-configured web and database
pairs during the entire experiment that lasts for one hour. We control the number of
concurrent clients from the same geographic location, therefore workload intensity, by
assigning different starting time and transaction time to each client.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:19

20 40 60 80 100 120
Time (30 sec. intervals)

0

20

40

60

80

100

#
 Q

u
e
ri

e
s/

S
e
co

n
d

Predicted Actual

(a) Browsing: 30 secs.

10 20 30 40 50 60
Time (60 sec. intervals)

0

20

40

60

80

100

#
 Q

u
e
ri

e
s/

S
e
co

n
d

Predicted Actual

(b) Browsing: 60 secs.

20 40 60 80 100 120
Time (30 sec. intervals)

0

20

40

60

80

100

#
 Q

u
e
ri

e
s/

S
e
co

n
d

Predicted Actual

(c) Ordering: 30 secs.

10 20 30 40 50 60
Time (60 sec. intervals)

0

20

40

60

80

100

#
 Q

u
e
ri

e
s/

S
e
co

n
d

Predicted Actual

(d) Ordering: 60 secs.
Fig. 6: Comparison of regression-based model predicted rates with empirical measure-
ments. Predicted and actual query rates over time for the browsing and ordering workload mixes.
The shaded areas represent the 95th percentile confidence interval. For both workload types, the
prediction accuracy is higher for a larger prediction window.

small medium large xlarge 2xlarge

Server Size

0

5

10

15

R
e
sp

o
n

se
 T

im
e
 (

m
s) G/G/1 Two-node QN Measurement

(a) Queueing model prediction accuracy.

small medium large

Server Size

0

5

10

15

R
e
sp

o
n

se
 T

im
e
 (

m
s)

Without Logging With Logging

(b) Logging overhead.
Fig. 7: Efficacy of the queueing model. (a) For each database server size, we compare the em-
pirically measured response times with predictions from a baseline G/G/1 model and our proposed
database-specific queueing model. (b) We quantify the overhead for obtaining measurable variables
for our two-node queueing network model.

We repeat the process five times and use the data from first four runs to train the
regression model and obtain model parameter (α, β) for each client location. We then
use the front-end requests from the fifth run as regression model input and calculate
the predicted database query rates and reconstruct ground truth of database queries
for each client location.

We plot the Predicted and Actual results for Pennsylvania clients with different
workload mixes and prediction intervals in Figure 6. We observe that our regression
model can make very reasonable predictions for both browsing (read-intensive) and
ordering (read-write mix) workload with a mean error of 7.35%. Specifically, as we
increase the prediction interval from 30 seconds to 60 seconds, our regression model
makes better and smoother decisions.

8.2.2. Queueing Model Prediction. Next, we evaluate our proposed database specific
queueing model from Section 4.1 by comparing the estimated database server response
times (which in turns yields server capacity) to a baseline G/G/1 queue [Guo et al. 2016]
proposed in our previous work, and the empirical measurement.

We configure both front-end and back-end servers in Virginia data center and start
a number of independent clients based on different server sizes. The independence
between clients make sure query arrival to database server satisfies poisson process.
And we carefully control the number of clients because we don’t want to saturate the
servers doing the test. For simplicity, we use a total of 100 clients for all server types
that are under evaluation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:20 T. Guo et al.

100 200 300 400 500 600 700 800 900 1000

Num. of Client Locations

0

50

100

150

200

250

300

9
5
%

il
e
 L

a
te

n
cy

 (
m

s) Greedy Cost Greedy Latency Baseline

(a) 95th percentile network latency.

100 200 300 400 500 600 700 800 900 1000

Num. of Client Locations

0

12500

25000

37500

50000

C
o
st

 (
$
)

Greedy Cost Greedy Latency Baseline

(b) Operation cost.
Fig. 8: Client workload impact on workload mapping algorithms. As the number of client
locations increases, cost-first greedy algorithm can achieve 95th percentile network latency as low
as xx ms while save up to 10.6% in operation cost.

We collect both query logs and resource utilization logs from database servers for
each experiment run that lasts half an hour. We then calculate the database server
response time using both G/G/1 queue and our two-node queueing network (Equation
(5)), and also obtain actual response time measurement by processing all the logs.
We repeat the same process five times for each server type and calculate the average
G/G/1 and DBScale estimations, the mean measurement value, and the 95th confidence
interval across across all five runs.

We plot these comparisons for different server sizes in Figure 7(a). These results
show that our database-specific queueing model has much better prediction accuracy
when compared to the more general G/G/1 model. We also see that empirically mea-
sured response times lie within the 95% confidence intervals of our DBScale estima-
tions, indicating a good prediction. Only in case of 2xlarge EC2 servers, where the em-
pirical value is outside the 95% CI, we see a prediction error of 19%. In all cases, the
model predictions are overestimates of the response times, indicating that the com-
puted capacity will be conservative from a provisioning perspective. Further, in Fig-
ure 7(b), we quantify any potential performance impacts of measuring all variables
for our two-node queueing networks. Our results show that logging these necessary
has very minimal impact on database servers in turns of query response time, under
reasonable server load. This indicates that our model is practical and can be used in
an online fashion.

8.2.3. Geo-distributed Workload Mapping Decisions.. Last, we evaluate our two greedy al-
gorithms’ performance in tail network latency and daily operation cost by comparing

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:21

50 65 80 95 110 125 140 155 170 185 200 215

Network SLA (ms)

0

50

100

150

200

250

300

9
5
%

il
e
 L

a
te

n
cy

 (
m

s) Greedy Cost Greedy Latency Baseline

(a) 95th percentile network latency.

50 65 80 95 110 125 140 155 170 185 200 215

Network SLA (ms)

0

12500

25000

37500

50000

C
o
st

 (
$
)

Greedy Cost Greedy Latency Baseline

(b) CDF of client response time.
Fig. 9: Network SLA impact on workload mapping algorithms. Because cost-first algorithm
adjusts workload mapping decision by using Network SLA as a constraint, we observe the 95th

percentile network latency increases accordingly. The cost differences between two algorithms are
stable around 7.8% after network SLA is set to be larger than 125 ms.

them with a baseline algorithm. The baseline algorithm simply selects the cheapest
cloud location and maps all client workload to that single location. Therefore, this
baseline yields the lowest operation cost and a high tail network latency—but it does
not provide any guarantee in satisfying TNSLA.

Our simulation is based on the current Amazon’s distributed clouds that consist
of twelve global cloud locations [Amazon Global Infrastructure 2016]. Currently, end
users might still experience hundreds of milliseconds network latency when connect-
ing to the closest Amazon cloud location. However, public cloud infrastructures are
going through rapid expansion with a total of 78 global regions as of year 2016 [Global
Cloud Infrastructure 2016], and users from well provisioned regions have as low as 33
milliseconds average network latency [Cisco Global Cloud Index 2016]. With the pre-
dicted increase in the number of data centers [Cisco Global Cloud Index 2016], we envi-
sion that public clouds will be highly distributed and provide very low network latency
to all end users in the near future. In fact, currently CDN providers are able to deliver
static contents from a server that is less than 10 ms away from major cities [Website
Latency With and Without a Content Delivery Network 2016]. Therefore it is impor-
tant to note results presented in this section can be improved significantly.

We collect empirical network latency traces by measuring the network distances be-
tween all PlanetLab nodes and Amazon clouds. This yields a latency matrix of size
(100, 12). We choose one particular server 4x large server with optimized I/O and de-
termine its capacity empirically. We use the above mentioned data as a basis for con-
structing simulation input.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:22 T. Guo et al.

Specifically, for each simulation run, we configure the corresponding TNSLA and the
number of client locations (as a proxy for client workload). We construct the set of
client locations by uniformly selecting from PlanetLab nodes with replacement. We
then generate normalized workload (compared to λc) associated with each client loca-
tion by drawing a value from a uniform distribution with range [0, 1]. We vary simula-
tion configurations and repeat each configuration for ten times and collect the network
latency distribution and operation cost as defined in Section 5.

In Figure 8, we study how our two greedy algorithms behave with an increasing
client workload and a fixed TNSLA of 200 ms. Both greedy algorithms produce up to
172 ms reduction in 95th percentile network latency. Latency-first greedy algorithm
achieves optimal tail latency up to 80 ms smaller than those of cost-first greedy al-
gorithm. In addition, cost-first greedy algorithm achieves almost identical operation
costs as with the baseline algorithm and an up to 10.6% saving when compared to
latency-first greedy algorithm. This is mainly because cost-first algorithm can try to
utilize eligible cloud location that is cheapest.

In Figure 9, we compare the performance of all three algorithms under different
network SLA specification for assigning workload of one thousand client locations. We
observe cost-first greedy algorithm behaves similarly to latency-first algorithm with
a smaller TNSLA value, as shown in Figure 9(a). This is because the number of eligi-
ble cloud locations for each client location is determined by TNSLA—and when TNSLA is
small enough, cost-first algorithm will pick the same cloud location as latency-first al-
gorithm. Therefore, the tail latency performance of two greedy algorithms diverge with
more relaxed network SLA values.

In summary, we show that cost-first greedy algorithm leads to higher cost savings
when both client workload and network SLA increase while is able to keep 95th per-
centile network latency within TNSLA specification. Because cost savings come from the
ability to aggregate client workload and having access to more eligible cheaper clouds,
we can expect higher savings in a more distributed cloud environment.

Conclusion: We empirically evaluate our regression-based workload prediction model,
our queueing-based capacity model and our workload mapping greedy algorithms us-
ing current distributed clouds and geographically-distributed clients. We show that our
workload prediction only incurs a mean error of 7.35% and our queueing model pro-
duces reasonable overestimation when compared to empirical measurement. Further,
our simulations demonstrate that our greedy algorithms can effectively make trade-offs
between tail network latency and operation costs when compared to the baseline algo-
rithm.

8.3. Benefits of Database Geo-elasticity
In this section, we design a case study that demonstrates the potential performance
improvement with geo-elastic provisioning. In addition, we compare the client perfor-
mance of running geo-elasticity with four different policies. Figure 10 depicts our setup
that involves two client locations, Pennsylvania and Germany, and two data center lo-
cations, Virginia and Ireland. Dark boxes represent web servers and light boxes repre-
sent database servers. For example, in the leftmost column, we have both clients from
Pennsylvania and Germany make requests to a web server running inside Virginia’s
data center, who then fetches data from database running in the same data center.
The top time axis shows the progress of different provisioning events with both local
elasticity and geo-elasticity. The entire provisioning activity is broken down into three
different phases, i.e., starting provisioning, finishing provisioning web server, and fin-
ishing provisioning database server.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:23

Start Web and DB
Provisioning

Finished Web
Provisioning

Finished DB
Provisioning

Phase 1: 62 secs Phase 2: 1414 secs Phase 3: 62 secs

VA

GER clientsPA clients

IRL

VA

VA VA

VA IRL

GER clientsPA clients

VA IRL

IRL

IRL IRL

GER clientsPA clients GER clientsPA clientsGER clientsPA clients

GER clientsPA clients

Loosely Tightly

Local Elasticity

Geo Elasticity

Fig. 10: Illustration of elasticity mechanisms and provisioning policies. We conduct an
end-to-end experiment with different phases to demonstrate a policy-driven geo-elasticity is the most
effective provisioning approach.

Time (32 Mins)
0

20

40

60

80

100

R
e
q

u
e
st

 P
e
r

M
in

Pennsylvania Germany

(a) Client request rates.

Local Elasticity Geo Elasticity
Mean(ms) 169 76

Std. Dev.(ms) 20 10
Conf. Int. (ms) [167.07, 170.93] [75.34 , 76.66]

(b) Response time statistics for local
and geo elasticity.

Fig. 11: Performance benefits for Geo-elasticity provisioning. Geo-elasticity provides lower
mean response times due to lower client-server network latencies.

Phase 1 Phase 2 Phase 3
Provisioning Stages

0

200

400

600

800

1000

1200

1400

1600

A
vg

.
R

e
sp

.
T

im
e
 (

m
s)

Read Write

(a) Mean Germany client response time.

0 500 1000 1500 2000

Client Resp. Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l

C
D

F

Tightly+Pre-copy

Tightly+No Pre-copy

Loosely+Pre-copy

Loosely+No Pre-copy

(b) CDF of client response time.
Fig. 12: Performance benefits of tightly coupled provisioning and pre-copying. A tightly
coupled policy improves the 95th percentile of response time from 810 ms to 250 ms when compared
to the loosely coupled policy. Pre-copying further improves 95th percentile of response time to 210
ms.

8.3.1. Performance Improvement with Geo-elasticity. We first compare the end-to-end per-
formance improvement brought by provisioning in a geo-elastic way when compared
to local elasticity. Figure 11(a) shows the average client requests for the entire experi-
ment duration. We deliberately specify a very low server response time SLA—that is,
at the end of the first provisioning epoch, our provisioning algorithms will scale up
existing server resources. Note that, a choice of low SLA also eliminates potential per-
formance deterioration caused by an overloaded server, making it easy to reason about
the performance improvement.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:24 T. Guo et al.

To handle such a workload, local elasticity provisions additional servers locally,
within the same Virginia data center location; while geo elasticity can provision capac-
ity at any suitable cloud location, i.e. Ireland cloud. The corresponding provisioning
results are shown in Phase 3 of Figure 10. We record per request end-to-end response
time for clients from both locations.

Table 11(b) shows that geo-elasticity reduces average response time from 169 ms to
76 ms, an 55.03% improvement, when compared to local elasticity. The reason under-
lying the improvement is clients from Germany can now be fully served in the nearby
Ireland cloud, instead of in the further Virginia data center. Therefore, all client re-
quests from Germany are at least seeing an 70 ms network round trip time reduction,
from 100.3 ms to 29.7 ms.

8.3.2. Policy-based Performance Improvement. Next, we scrutinize the end-to-end re-
sponse time variations experienced by Germany clients when performing geo-elasticity
with loosely-coupled policy. Figure 12(a) shows the response time spikes that Ger-
many clients experience when provisioning activity is not synchronized between IaaS
and DBaaS clouds—loosely-coupled provisioning. During phase two, all client requests
from Germany are first sent to the newly provisioned web server in Virginia who then
makes query requests to the database server in Ireland. As a result, requests that need
to visit back-end servers multiple times to fetch desired data will experience 2x to 6x
increase.

To reduce performance impact when provisioning for dependent resources, for exam-
ple front-end and backend servers, we can either reduce provisioning duration exter-
nal to clients or synchronize provisioning activities among resources. In the context of
this case study, we can dramatically shorten database provisioning time from tens of
minutes to a couple of minutes by pre-copying required data in advance; and we can
enforce front-end servers to be configured to database servers within the same data
center—data centers with acceptable network latency.

We plot client response time CDF obtained using four different policy combinations
in Figure 12. Tightly-coupled provisioning, with or without pre-copying, outperform
loosely-coupled provisioning with an up to 74% improvement for 95th percentile. When
pre-copying the database snapshot to the destination Ireland cloud in advance, we
only need to copy a delta of 100 MB data during actual database provisioning. As a
result, we drastically reduce duration of phase two and in turns cut down the number
of requests that need to make transcontinental requests from Europe to USA. With
pre-copying enabled, loosely-coupled provisioning yields up to 31% improvement for
95th percentile when compared without pre-copying.

Conclusion: Geo-elasticity provisioning effectively reduces the mean end-to-end re-
sponse time, thus improving performance for all clients. Tight-coupled and pre-copy
policies are effective in reducing response time spikes during provisioning.

8.4. Comparing DBScale to a Caching Approach
In this section, we compare DBScale’s performance to that of a caching-based ap-
proach. In our caching approach, the database server runs in a single centralized lo-
cation while web servers are replicated in various geographic locations and use Mem-
cached [Memcached 2015], or any other in-memory cache, to store recent query results.

We modified TPC-W so that read requests for data are sent to in-memory cache, who
will then query remote database servers during cache miss. We use a small database of
512 MB and allocate 1 GB RAM for the in-memory cache. We warm up the in-memory
cache using a modified read-only browsing workload mix. By warming up cache using
known workload mix, we are able to control the desired cache hit rates. For example,
if we set the cache hit rate to be 10%, each request will trigger a cache miss with a

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:25

Distributed Clouds

Clients

......WS

VA IRL

......

PA
Single-Site

DBScale

DB WS DB

(a) Baseline setups: DBScale and single-site elasticity.

Distributed Clouds

Clients

......WS

VA IRL

DB......
cache

PA

(100 � x)% queries

(b) Set up for x% cache hit rate.
Fig. 13: Experimental setup for comparing DBScale to a caching approach. The front-
end tier is replicated and configured with an 1 GB in-memory cache in the caching approach. We
use the same web and database server types for all the experiments.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Client Resp. Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l

C
D

F

DBScale

All Hit

No Hit

Single-Site

(a) CDF of response time.

DBScale All Hit No HitSingle-Site

Setup Scenarios

10
0

10
1

10
2

10
3

10
4

M
e
a
n

 R
e
sp

.
T

im
e
(m

s) Read

Write

(b) Average response time.
Fig. 14: CDF comparison of end-user response time of four different scenarios. A
caching approach with 100% hit rate has comparable performance to DBScale while a 0% hit rate
causes performance to be similar to local single-site elasticity.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Client Resp. Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l

C
D

F

10% Hit

20% Hit

30% Hit

40% Hit

50% Hit

(a) CDF of response time.

10 20 30 40 50

Cache Hit Rate(%)

0

1000

2000

3000

4000

5000

6000

M
e
a
n

 R
e
sp

.
T

im
e
(m

s) Read

Write

(b) Average response time v.s. hit rate.
Fig. 15: CDF comparison of end-user response time with increasing hit rate. As the hit
rate increases from 10% to 50%, the 95th percentile response time improves by 72.18%, from 4780
ms to 1330 ms.

probability of 0.1 and be served directly from cache with 0.9 chance. The setup for this
case study is illustrated in Figure 13. We run the default browsing workload mix (95%
reads and 5% writes) from Pennsylvania clients for different setup, and collect client
end-to-end response time for all requests.

8.4.1. In-Memory Cache v.s. DBScale. We plot CDFs of end-user response time for four
different scenarios, i.e., DBScale, two extreme caching scenarios and single-site local
elasticity, in Figure 14. An All hit cache represents the best case scenario where all
data requests can be satisfied from the local cache, while an No hit cache corresponds
to the worse case scenario in which data are fetched from remote database across
WAN. We show that DBScale has comparable performance with a perfect cache be-

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:26 T. Guo et al.

VA IRLCA

DBScale

DB DB DB

ReportData

1. Transfering 2. Updating 2.1 Updating Slaves

(a) Batched updates setup.

VA(Master) IRL(Slave 2)CA(Slave 1)

DBScale

DB DB DB

ReportData

3. Querying status 4. Generating
(b) Online master-slave setup.

Fig. 16: Experimental setup for updating databases in different locations. Updates are
first copied to all the cloud locations or the master database’s location. Then we either take the
databases offline for batched update or configure a master-slave topology for online synchronization.

cause in both cases, front-end servers are able to fetch data locally, either from a local
cache or a local database. In addition, we also demonstrate that both Single-site and a
complete cold cache perform poorly because all requests for data have to go to the fur-
ther centralized database, either directly or from within the cache. Besides significant
improvement of 95th percentile from 4.9 seconds to 140 ms, DBScale also reduces the
mean response time, especially for write requests as shown in Figure 14(b) (log-scale y
axis). In summary, DBScale behaves akin to the scenario where all requests are served
from local cache, while single-site local elasticity is similar to a complete cache miss.

8.4.2. Impact of Cache Hit Rate. Next, we study performance impact with an increasing
hit rate from 10% to 50%. In Figure 15(a), we plot the CDF of client response time and
show that 95th percentile decreases from 478 ms to 133 ms when more requests are
served from local cache. This is because the percentage of requests that avoid WAN
latencies decreases as the hit rate increases from 10% to 50%. In addition, as shown in
Figure 15(b), the benefits of caching only accumulate for predominantly read-intensive
workloads. Requests that trigger update queries still need to visit the remote database
server and therefore experience large network latency, resulting in poor average re-
sponse time.

Conclusion: we demonstrate that a caching-based approach might provide compara-
ble performance to DBScale, with high hit rate and a low fraction of write workload.
However, in practice, the actual hit rate depends on a number of factors, such as the
skew in query popularity distribution, cache size and replacement algorithms. DBScale
does not depend on these factors and could yield good performance always (at the cost
of needing consistency maintenance among replicas).

8.5. Consistency Maintenance Overheads
In our final set of experiments, we evaluate the overheads of maintaining consistency
of database replicas that spread across transcontinental cloud locations. We compare
two common approaches, i.e. batched and online updates using MySQL master-slave
configuration, for achieving database consistency. The experiment setup is illustrated
in Figure 16 for both batch and online scenarios. And we use TPC-W web application
benchmark that is loaded with 13.43GB database.

8.5.1. Batched Updates Overhead. We measure the overhead of applying a varying
amount of updates in batch mode during offline maintenance windows; the three
database replicas are each hosted separately in Virginia, California and Ireland data
centers, as shown in Figure 16(a). We measure the latency to apply updates at all
replicas and restart all servers. Figure 17(a) shows the mean downtime for applying
varying amount of updates across five runs along with the 95% confidence intervals.
The figure shows that it takes 12.52 minutes to update 1% of database data on a small

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:27

1% 5% 10%
Update Data

0

30

60

90

120

150

D
o
w

n
ti

m
e
 (

M
in

.) Small

Medium

Large

(a) Maintenance downtime v.s. data.

Small Medium Large
Server Size

0

3

6

9

12

15

D
o
w

n
ti

m
e
 (

M
in

.) VA

CA

IRL

(b) Updating 1 % of database.

Small Medium Large
Server Size

0

16

32

48

64

80

D
o
w

n
ti

m
e
 (

M
in

.) VA

CA

IRL

(c) Updating 5 % of database.

Small Medium Large
Server Size

0

30

60

90

120

150

D
o
w

n
ti

m
e
 (

M
in

.) VA

CA

IRL

(d) Updating 10% of database.
Fig. 17: Batched updates Overheads. The maintenance downtime (ranging from a few minutes
to hours) due to batched updates is impacted by the amount of the data that need to be updated,
and the server capacity, i.e. server size and the cloud location.

server and as much as 60 minutes to update 10% of the database on a medium server.
In general, the downtime is cut in half as we move from a small server to medium
or large servers. We observe the capacity differences and slightly different downtimes
even for servers of same types in different cloud locations as shown in Figure 17(d).
These results show that, barring under-sized small severs, batched updates can be a
feasible option during maintenance windows, which themselves last for a few hours.

8.5.2. Online Master-slave Maintenance.. Finally, we study the overheads of using master-
slave topology for executing database updates by measuring (i) the impact on mainte-
nance time and (ii) the impact on foreground requests and client response time. As
shown in Figure 16(b), we configure the database in Virginia as the master database
and the other two as Slave 1 and Slave 2 in California and Ireland respectively. Read
queries are sent to the databases in the vicinity while write queries are sent to master
database. We record the time to update 1% of database data as well as the end-users re-
sponse time using this topology; all the database servers run on medium-sized servers.

Figure 18(a) shows that it takes 6.35 minutes to update 1% data and as the front-end
workload increase, the online update time increase too. Our observation suggests that
in order to reduce the length of update time, i.e. the impact duration on end-users, we
could adjust the database server size based on end-users’ workload during the online
maintenance phase. To demonstrate the online maintenance activities’ impacts on the
end-users’ response time, in Figure 18(b), we compare the client response time distri-
bution of master and slaves compared to baseline no writes scenario for different levels
of workload intensity. We observe no obvious impact on client response time distribu-
tion of master-slave updates approaches at different workload intensity, making it a
feasible solution as well. Specifically, in Figure 18(c), we show that the 95th percentile
response time increases from 400 ms to 560 ms for master and to 595 ms for slaves for
a 50 clients workload at each location.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:28 T. Guo et al.

0 10 20 30 40 50

Num. of Clients

0

2

4

6

8

10

12

U
p

d
a
te

 T
im

e
 (

se
c.

)

(a) Maintenance v.s. Clients.

10 20 30 40 50

Num. of Clients

0

100

200

300

400

500

R
e
sp

o
n

se
 T

im
e
 (

m
s) Baseline

Master

Slave1

Slave2

(b) Response time distribution.

0 100 200 300 400 500

Client Resp. Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
a
l

C
D

F

Baseline

Master

Slave1

Slave2

(c) Response time CDF.
Fig. 18: Impacts of online master-slave on update time and response time distribution.
As the workload of end-users increase, we observe a corresponding increase in the update latency.
Also, response time CDF of both master and slaves behaves similarly to the no-writes baseline
scenario.

Conclusion: we measure performance overhead of two consistency models provided in
DBScale in varying scenarios. These measurements can serve as a guideline for config-
uring consistency for different application needs. We show the batch update time varies
according to the amount of new data and server capacity. In master-slave mode, we
show overhead increases with the client workload, with an up to 40% increase at 95th

percentile response time at master.

9. RELATED WORK
Distributed cloud platforms have became a popular paradigm for hosting web appli-
cations. Their pay-as-you-go pricing model and flexible resource allocation make them
well-suited for hosting applications with dynamic workloads [Arlitt and Williamson
1997; Birke et al. 2012]. When physical resources are shared among multiple VMs,
it becomes challenging to accurately model the resource usages for each VM [Kundu
et al. 2010; Wood et al. 2008; Cherkasova and Gardner 2005] mainly due to interfer-
ence of co-located VMs [Nathuji et al. 2010; Chiang and Huang 2011; Kambadur et al.
2012; Zhu and Tung 2012]. The problem becomes more noticeable for applications with
bursty workload characteristics [Mi et al. 2008]. To overcome this hurdle, recent efforts
have attempted to mitigate the impact of interference either by combining the VMs
workloads [Meng et al. 2010] or by employing a novel performance prediction model
that is capable of dealing with bursty workloads or even flash crowds [Casale et al.

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:29

2012]. In our work, we combine our empirically measured distributed front-end work-
load and a regression-based model to predict the spatial and temporal variations in
the backend database workload.

Queueing-based models have been used extensively to model cloud-based applica-
tions [Urgaonkar et al. 2005; Villela et al. 2007; N. Bennani and A. Menasce 2005],
but most have focused on front-end servers . To parameterize those proposed models,
it often requires to perform empirical measurements on real system with predefined
workload. However, due to potential costs of intrusive measurements and the volatil-
ity of workload mix, an alternative regression model [Zhang et al. 2007] was proposed
to approximate the CPU demand with different transaction mixes so as to effectively
model complex live systems with very few parameters. In our work, we focus on dy-
namic provisioning in distributed database cloud and model the database server as a
two-node queueing network with feedback to track both CPU and I/O utilization.

As more database management tasks [Curino et al. 2011b; Popa et al. 2011] are
offloaded to the cloud, researchers have begun to focus on adaptive and dynamic pro-
visioning of database servers based on SLA [Xiong et al. 2011; Mozafari et al. 2013;
Sakr and Liu 2012; Cecchet et al. 2011; P N et al. 2014]. These efforts on database
provisioning include using models and tools to predict resource utilization and per-
formance for OLTP databases [Mozafari et al. 2013; Curino et al. 2011a], cloning tech-
niques to spawn database replicas [Cecchet et al. 2011; Nguyen et al. 2013], live migra-
tion techniques to horizontally scale up database server [Elmore et al. 2011], middle-
ware approach to coordinate cloud-hosted applications and databases without violating
SLA [Sakr and Liu 2012] and utilizing distributed cloud platforms for performance-
aware data replication [Agarwal et al. 2010; P N et al. 2014; Ping et al. 2011; Liu et al.
2013]. Our focus here is on geo-elasticity, which is less well studied, and we propose
the DBScale framework to handle geo-elasticity for cloud hosted databases.

10. CONCLUSIONS
We proposed a new dynamic provisioning algorithm, called geo-elasticity, for DBaaS
clouds to handle both temporal and spatial workload dynamics. Our work is motived by
the emergence of distributed clouds, the popularity of geographically distributed appli-
cations, and the paradigm for applications to host their backend tiers in DBaaS clouds.
To achieve geo-elasticity, we presented a regression-based prediction model that infers
geographical workload distribution for database tier, and a two-node open queueing
network model that estimates database capacity. Further, we proposed the geo-elastic
algorithm that combines both models and two greedy workload assignment algorithms
for provisioning database servers in distributed clouds.

We implemented a prototype called DBScale as a middleware based on Amazon dis-
tributed clouds and conducted comprehensive evaluations to quantify DBScale’s per-
formance. Specifically, we performed both end-to-end experiments as well as bench-
mark experiments to demonstrate the efficacy of our models, algorithms and DBScale
as a whole. Our results showed up to a 66% improvement in response time when com-
pared to local elasticity approaches. As part of future work, we plan to explore the
benefits of provisioning using heterogenous cloud resources and considering cloud per-
formance interference explicitly.

APPENDIX
A.1. Geo-elastic Provisioning with Quadratic Programming
Both χlat and χcos, obtained through our greedy algorithms in Section 5.1, are binary
matrices. That is, χij is binary—either all or none of workload from client location i
is assigned to cloud location j. In this section, we formulate the workload assignment

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

ZZ:30 T. Guo et al.

problem using quadratic programming that allows us to assign client workload from
the same location i to multiple cloud locations. This provides us flexibility to split and
pool client workload and potentially reduce the total number of servers needed.

In a high level, this quadratic formulation reduces cost by finding cheapest cloud
locations and aggregating client workload into as fewer servers as possible. In other
words, for a subset client workload scenarios, our cost-first greedy algorithm will pro-
duce the assignments with the same costs.

min

n∑

j=1

dωjeCj(ωj) (19)

subject to:

0 ≤ χij ≤ 1, ∀i ∈ Lc,∀j ∈ Lk (20)
n∑

j=1

χij = 1, ∀i ∈ Lc (21)

α95(TNc) ≤ TNSLA (22)

ωj ≤ Rj , ∀j ∈ Lk (23)

Recall that Cj(ωj) (12) is a function of ωj (11) and represents the total cost to serve
ωj workload at cloud location j. The objective function (19) tries to minimize the total
cost for all workload ω, where dωje is the number of servers needed at cloud location
j. Constraints (20) and (21) makes sure that all client workload is assigned, and con-
straint (22) and (23) ensure that network SLA and available resource is not violated.

By solving the above QP formulation, we obtain the assignment matrix χQP
m×n. Com-

bining with λN (10), we get

ωQP = λNχQP . (24)

The total cost associated is then CQP =
∑n
j=1dω

QP
j eCj(ωQPj). Last, we use TNQP =

{(Aij , dχijλie) | ∀i ∈ Lc,∀j ∈ Lk} to approximate the true network latency distribution.
Note TNQP includes at most mn more data samples compared to actual measurement.
But given a reasonable workload λ, the extra samples will not affect statistics we are
interested, i.e. mean and 95th percentile.

REFERENCES
Daniel Abadi. 2012. Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only

Part of the Story. Computer 45, 2 (Feb. 2012), 37–42. DOI:http://dx.doi.org/10.1109/MC.2012.33
Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and Harbinder Bhogan. 2010.

Volley: Automated Data Placement for Geo-Distributed Cloud Services.. In NSDI. 17–32.
Amazon Global Infrastructure 2016. Amazon Global Infrastructure. http://aws.amazon.com/about-aws/

global-infrastructure/. (2016).
Amazon Route 53 2015. Amazon Route 53: Choosing a Routing Policy. http://docs.aws.amazon.com/Route53/

latest/DeveloperGuide/routing-policy.html. (2015).
Yair Amir, Claudiu Danilov, Michal Miskin-Amir, Jonathan Stanton, and Ciprian Tutu. 2003. On the per-

formance of consistent wide-area database replication. Technical Report.
Martin F. Arlitt and Carey L. Williamson. 1997. Internet Web Servers: Workload Characterization and Per-

formance Implications. IEEE/ACM Trans. Netw. (1997).

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

http://dx.doi.org/10.1109/MC.2012.33
http://aws.amazon.com/about-aws/global-infrastructure/
http://aws.amazon.com/about-aws/global-infrastructure/
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html

Performance and Cost Considerations for Providing Geo-Elasticity in Database Clouds ZZ:31

Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2012. Usage Patterns in Multi-tenant Data Centers: A
Temporal Perspective. In ICAC.

George Edward Pelham Box and Gwilym Jenkins. 1990. Time Series Analysis, Forecasting and Control.
O. J. Boxma, R. D. van der Mei, J. A.C. Resing, and K. M. C. van Wingerden. 2005. Sojourn Time Approxi-

mations in a Two-node Queueing Network. In ITC.
G. Casale, Ningfang Mi, L. Cherkasova, and E. Smirni. 2012. Dealing with Burstiness in Multi-Tier Appli-

cations: Models and Their Parameterization. In TSE.
Emmanuel Cecchet, Rahul Singh, Upendra Sharma, and Prashant Shenoy. 2011. Dolly: Virtualization-

driven Database Provisioning for the Cloud. In VEE.
Ludmila Cherkasova and Rob Gardner. 2005. Measuring CPU Overhead for I/O Processing in the Xen Vir-

tual Machine Monitor. In ATEC.
Ron C Chiang and H Howie Huang. 2011. TRACON: interference-aware scheduling for data-intensive ap-

plications in virtualized environments. In Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. ACM, 47.

Cisco Global Cloud Index 2016. Cisco Global Cloud Index:Forecast and Methodology,20152020.
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/
white-paper-c11-738085.pdf. (2016).

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale
Woodford. 2012. Spanner: Google’s Globally-distributed Database. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation (OSDI’12). USENIX Association, Berke-
ley, CA, USA, 251–264. http://dl.acm.org/citation.cfm?id=2387880.2387905

Carlo Curino, Evan P.C. Jones, Samuel Madden, and Hari Balakrishnan. 2011a. Workload-aware Database
Monitoring and Consolidation. In SIGMOD.

Carlo Curino, Evan PC Jones, Raluca Ada Popa, Nirmesh Malviya, Eugene Wu, Sam Madden, Hari Balakr-
ishnan, and Nickolai Zeldovich. 2011b. Relational cloud: A database-as-a-service for the cloud. (2011).

G DeCandia, D Hastorun, and M Jampani. 2007. Dynamo: amazon’s highly available key-value store. ACM
SIGOPS Operating . . . (2007).

Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2011. Zephyr: Live Migration in
Shared Nothing Databases for Elastic Cloud Platforms. In SIGMOD.

Global Cloud Infrastructure 2016. Regions Beyond Regions: Global Cloud Infrastructure Expansions. https://
blog.fugue.co/2016-04-12-regions-beyond-regions-global-cloud-infrastructure-expansions.html. (2016).

Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave Maltz, Zhaoyi Liu, Vin Wang,
Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis Kurien. 2015. Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analysis. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM ’15). ACM, New York, NY, USA, 139–152.
DOI:http://dx.doi.org/10.1145/2785956.2787496

T. Guo and P. Shenoy. 2015. Model-Driven Geo-Elasticity in Database Clouds. In Autonomic Computing
(ICAC), 2015 IEEE International Conference on.

Tian Guo, Prashant Shenoy, and Hakan Hacigümüş. 2016. GeoScale: Providing Geo-Elasticity in Dis-
tributed Clouds. In IEEE International Conference on Cloud Engineering (IC2E).

Keqiang He, Alexis Fisher, Liang Wang, Aaron Gember, Aditya Akella, and Thomas Ristenpart. 2013. Next
Stop, the Cloud: Understanding Modern Web Service Deployment in EC2 and Azure. In IMC.

Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A Kim. 2012. Measuring interference between
live datacenter applications. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. IEEE Computer Society Press, 51.

S. Kundu, R. Rangaswami, K. Dutta, and Ming Zhao. 2010. Application performance modeling in a virtual-
ized environment. In HPCA.

John D. C. Little. 1961. A Proof for the Queuing Formula: L = λW . Operations Research 9, 3 (1961), 383–387.
Guoxin Liu, Haiying Shen, and Harrison Chandler. 2013. Selective data replication for online social net-

works with distributed datacenters. In Network Protocols (ICNP), 2013 21st IEEE International Confer-
ence on. IEEE, 1–10.

Maxmind GeoIP Service 2016. Maximind GeoIP Service. https://www.maxmind.com/en/home. (2016).
Memcached 2015. Memcached. http://memcached.org/. (2015).

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
http://dl.acm.org/citation.cfm?id=2387880.2387905
https://blog.fugue.co/2016-04-12-regions-beyond-regions-global-cloud-infrastructure-expansions.html
https://blog.fugue.co/2016-04-12-regions-beyond-regions-global-cloud-infrastructure-expansions.html
http://dx.doi.org/10.1145/2785956.2787496
https://www.maxmind.com/en/home
http://memcached.org/

ZZ:32 T. Guo et al.

Xiaoqiao Meng, Canturk Isci, Jeffrey Kephart, Li Zhang, Eric Bouillet, and Dimitrios Pendarakis.
2010. Efficient Resource Provisioning in Compute Clouds via VM Multiplexing. In ICAC. 10.
DOI:http://dx.doi.org/10.1145/1809049.1809052

Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. 2008. Burstiness in Multi-tier
Applications: Symptoms, Causes, and New Models. In Middleware.

Barzan Mozafari, Carlo Curino, and Samuel Madden. 2013. DBSeer: Resource and Performance Prediction
for Building a Next Generation Database Cloud.. In CIDR.

Mohamed N. Bennani and Daniel A. Menasce. 2005. Resource Allocation for Autonomic Data Centers Using
Analytic Performance Models. In ICAC.

Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. 2010. Q-clouds: Managing Performance Interference
Effects for QoS-aware Clouds. In EuroSys.

Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and Amr El Abbadi. 2015. Minimizing Commit La-
tency of Transactions in Geo-Replicated Data Stores. In Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data (SIGMOD ’15). ACM, New York, NY, USA, 1279–1294.
DOI:http://dx.doi.org/10.1145/2723372.2723729

Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes. 2013. Agile: Elastic dis-
tributed resource scaling for infrastructure-as-a-service. In Proc. of the USENIX International Confer-
ence on Automated Computing (ICAC13). San Jose, CA.

Shankaranarayanan P N, Ashiwan Sivakumar, Sanjay Rao, and Mohit Tawarmalani. 2014. Performance
sensitive replication in geo-distributed cloud datastores. In DSN.

Percona Xtrabackup 2015. Percona Xtrabackup. (2015).
Fan Ping, Xiaohu Li, Christopher McConnell, Rohini Vabbalareddy, and Jeong-Hyon Hwang. 2011. Towards

optimal data replication across data centers. In Distributed Computing Systems Workshops (ICDCSW),
2011 31st International Conference on. IEEE, 66–71.

Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan. 2011. CryptDB: protect-
ing confidentiality with encrypted query processing. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles. ACM, 85–100.

S. Sakr and A. Liu. 2012. SLA-Based and Consumer-centric Dynamic Provisioning for Cloud Databases. In
CLOUD.

Ankit Singla, Balakrishnan Chandrasekaran, P. Brighten Godfrey, and Bruce Maggs. 2014. The Internet at
the Speed of Light. In Proceedings of the 13th ACM Workshop on Hot Topics in Networks (HotNets-XIII).
ACM, New York, NY, USA, Article 1, 7 pages. DOI:http://dx.doi.org/10.1145/2670518.2673876

Y Sovran, R Power, M K Aguilera, and J Li. 2011. Transactional storage for geo-replicated systems. In
Proceedings of the Twenty-Third

The ObjectWeb TPC-W implementation 2005. The ObjectWeb TPC-W implementation. http://jmob.ow2.org/
tpcw.html. (2005).

B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. 2005. Dynamic Provisioning of Multi-tier Internet
Applications. In ICAC.

Daniel Villela, Prashant Pradhan, and Dan Rubenstein. 2007. Provisioning Servers in the Application Tier
for e-Commerce Systems. TOIT (2007).

Website Latency With and Without a Content Delivery Network 2016. Website Latency With and Without a
Content Delivery Network. https://www.keycdn.com/blog/website-latency/. (2016).

Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy. 2008. Profiling and Modeling
Resource Usage of Virtualized Applications. In Middleware.

P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Hacigümüş. 2011. Intelligent management of virtualized
resources for database systems in cloud environment. In 2011 IEEE 27th International Conference on
Data Engineering. 87–98. DOI:http://dx.doi.org/10.1109/ICDE.2011.5767928

Qiang Xu, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Jeffrey Pang, and Shobha Venkataraman. 2011.
Identifying Diverse Usage Behaviors of Smartphone Apps. In IMC.

Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. 2007. A Regression-Based Analytic Model for Dynamic
Resource Provisioning of Multi-Tier Applications. In ICAC.

Qian Zhu and Teresa Tung. 2012. A performance interference model for managing consolidated workloads
in QoS-aware clouds. In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on. IEEE,
170–179.

Received August 2016; revised May 2017; accepted May 2017

ACM Transactions on Autonomous and Adaptive Systems, Vol. XX, No. YY, Article ZZ, Publication date: May 2017.

http://dx.doi.org/10.1145/1809049.1809052
http://dx.doi.org/10.1145/2723372.2723729
http://dx.doi.org/10.1145/2670518.2673876
http://jmob.ow2.org/tpcw.html
http://jmob.ow2.org/tpcw.html
https://www.keycdn.com/blog/website-latency/
http://dx.doi.org/10.1109/ICDE.2011.5767928

