Cloud-based or On-device:
An Empirical Study of Mobile Deep Inference

Tian Guo
Computer Science Department
Worcester, MA, USA
Worcester Polytechnic Institute
tian@cs.wpi.edu

Abstract—Modern mobile applications are benefiting signifi-
cantly from the advancement in deep learning, e.g., implementing
real-time image recognition and conversational system. Given a
trained deep learning model, applications usually need to perform
a series of matrix operations based on the input data, in order to
infer possible output values. Because of computational complexity
and size constraints, these trained models are often hosted in the
cloud. To utilize these cloud-based models, mobile apps will have
to send input data over the network. While cloud-based deep
learning can provide reasonable response time for mobile apps,
it restricts the use case scenarios, e.g. mobile apps need to have
network access. With mobile specific deep learning optimizations,
it is now possible to employ on-device inference. However, because
mobile hardware, such as GPU and memory size, can be very
limited when compared to its desktop counterpart, it is important
to understand the feasibility of this new on-device deep learning
inference architecture. In this paper, we empirically evaluate the
inference performance of three Convolutional Neural Networks
(CNNs) using a benchmark Android application we developed.
Our measurement and analysis suggest that on-device inference
can cost up to two orders of magnitude greater response time
and energy when compared to cloud-based inference, and that
loading model and computing probability are two performance
bottlenecks for on-device deep inferences.

Index Terms—Mobile Deep Learning, Performance Measure-
ment

I. INTRODUCTION

Deep learning has started to gain popularity in powering up
modern mobile applications. Training deep neural networks
requires access to large amounts of data and computing
powers. As a result, these neural networks are often trained
by leveraging cheaper, yet more powerful cloud GPU clusters.
Once trained, the inference phase can be completed in a
reasonable amount of time, e.g., less than one second, using a
single machine. Pre-trained models can be hosted for private
use or offered as public cloud deep learning services [1],
[2. To utilize cloud-based pre-trained models, mobile app
developers use exposed cloud APIs to offload deep learning
inference tasks, such as object recognition shown in Figure
to the hosting server. Mobile apps that execute inference tasks
this way is referred to as cloud-based deep inference.

Despite their increasing popularity, the use case scenarios of
cloud-based deep inference can be limited due to data privacy
concern, unreliable network condition, and impact on battery
life. Alternatively, we can perform inference tasks locally
using mobile CPU and GPU [3]. We refer to this mobile deep
learning approach as on-device deep inference. On-device deep
inference can be a very attractive alternative to the cloud-based
approach, e.g., by providing mobile applications the ability to
function even without network access.

Input Layer

Output Layer

\— “Greenhouse, nursery, glasshouse”

Inference Labels

Hidden Layer(s)

Image Data

Deep Neural Network

Fig. 1: Object recognition with deep neural networks. An image
passes through a deep neural network that consists of layers
of neurons. The output layer produces the inference labels that
best describe the image.

Given the above two design choices for implementing deep
inference, it is beneficial for developers to understand the
performance differences. However, it is not straightforward to
reason about mobile apps performance when using on-device
deep inference. The difficulties can be attributed to the fol-
lowing reasons. First, deep neural networks (DNN) can differ
vastly in terms of network architecture, number of parameters,
and model sizes (see Figure E]) Second, the inference tasks
can be of different complexities depending on the input data,
e.g., large images vs. small images, and the DNN model in
use. Third, mobile devices often have heterogenous resource
capacities and can exhibit different runtime behaviors, such
as garbage collection activities, given different deep learning
models and inference tasks combinations.

To address the challenges of understanding deep learning
inference, in this paper we develop a mobile application
benchmark that allows end users to supply configurations
including inference mode, model, and input data. We conduct
a detailed measurement study using our mobile application
with cloud-based and on-device deep inference, three convo-
lutional neural networks, and a dataset of fifteen images. Our
evaluation shows that cloud-based approach can save up to
two orders of magnitude in terms of both end-to-end response
time and mobile energy consumption. Further, we analyze
the performance differences between on-device and cloud-
based approaches with an in-depth analysis of performance
bottlenecks. Our analysis suggests that loading and computing
using deep learning models dominate the end-to-end inference
time. Lastly, we find that current on-device approach, when
utilizing mobile GPU, provides reasonable average inference
time of 2.2 seconds if models are preloaded into the memory.

II. BACKGROUND

In this section, we first provide a background on deep learn-
ing models and platforms. We then discuss two design choices
for implementing deep learning powered mobile apps. Lastly,

mailto:tian@cs.wpi.edu

4. Model computation

oEooigeEoe

2. Send the image

5. Generate the most
Mobile Device

Web Server

(a) Cloud-based inference.

3. Model computation

ey [t

SO

2.(Invoke a Caffe model||

©.| 1. Users take @ picturd—g

Mobile Device
(b) On-device inference.

4. Generate the most
probable labels

Fig. 2: Design choices of deep learning powered maobile applications. We use our implemented object recognition Android App as
an example to illustrate the steps involved to perform cloud-based inference and on-device inference.

we provide a brief explanation of mobile OS memory resource
management and its associated performance implication.

A. Deep Learning Models

Deep learning refers to a class of artificial neural networks
(ANNSs) for learning the right representation of input data
and is widely used for visual and speech recognition [4]].
In this paper, we focus on a specific visual recognition task
called object recognition that maps an image to a list of most
probable text labels using deep neural networks (DNNs), as
illustrated in Figure DNNs usually consist of one input
layer and one output layer, and a number of hidden layers.
Each layer can consist of different numbers of processing units
(neurons). Given an image, DNNs use it as input to initialize
the first layer, pass it through processing units in hidden layers,
and eventually generate a probability distribution over label
categories at the final layer. The inference labels correspond
to the categories with the highest probability values. The
complexity of the inference tasks depends on the computation
defined in each unit as well as the total number of units and
layers.

In this paper, we focus on a special class of deep learning
models called convolutional neural networks (CNNs) [5], [6],
[7]. CNNs are widely used for visual recognition tasks due to
their high accuracy. CNNs usually consist of many different
types of layers, such as convolutional layers, pooling layers,
and fully-connected layers (refer to Figure). Each layer takes
data from previous layer and apply predefined computation in
parallel. For example, convolutional layers use both linear con-
volutional filters and nonlinear activation functions to generate
feature maps [8], while pooling layers control overfitting by
reducing parameters in the representation [9].

There are a number of popular deep learning frameworks,
such as Caffe [10], Torch [L1l], TensorFlow [12], that ease
the training and deploying of deep learning models. Different
frameworks require different syntaxes to describe CNNs and
have different trade-offs for training and inference [[13]] phases.
Because Caffe provides a flexible way to define CNN layers
and has a large collection of pre-trained models [14], we
choose to evaluate CNN models trained using the Caffe
framework in this paper. A pre-trained Caffe model contains
a binary caffemodel file that describes model parameters,
a prototxt file that describes model network, and an
accompanying text file of labels.

B. Mobile Apps

1) Cloud-based vs. on-device Inference: Deep learning
powered mobile apps can be roughly categorized into two

types (as shown in Figure 2 : the cloud-based inference and
on-device inference. The key differences between these two
architectures are where the CNN models are stored, and how
the inference task is executed. Cloud-based inference leverages
pre-trained models in powerful cloud servers and is by far the
more popular design choice when it comes to designing mobile
deep learning apps.

Alternatively, mobile apps can be built upon on-device
inference. In essence, this means CNN models will be stored
on mobile device and inference tasks will be executed using
mobile CPU or GPU. Although conceptually simple, it is not
always straightforward to deploy CNN models into mobile
devices. For example, existing models that are designed to
run on powerful servers from the outset can contain hundreds
of layers and millions of parameters, therefore are not suitable
to run on resource-constrained mobile devices.

In this paper, we look at two existing approaches that enable
on-device inference. The first approach relies on porting ex-
isting frameworks [18]], [19] to mobile platforms so that CNN
models can run on the mobile platform. When developing
Android apps using Caffe Android Lib [19], app developers
first need to compile different versions of libcaffe.so
and libcaffe_jni.so for all supported mobile CPU and
instruction sets. These compiled library files then need to be
loaded before applications perform inference tasks. However,
because mobile GPUs are very different from desktop GPUs,
currently none of the ported mobile libraries support executing
model computation using mobile GPUs. The second approach
relies on third-party libraries that convert existing models
to supported formats [3] to take advantage of the mobile
GPU. For example, CNNDroid expresses CNN layers in
RenderScript kernels so that the RenderScript runtime
framework can parallelize model computations across both
CPUs and GPUs [20].

2) Lifecycle Management and Its Performance Implication:
When an user first launches the mobile app, Android OS
will first call the onCreate () method inside the launcher
main activity. After successfully setting up and initializing
states, the activity runs in the foreground of the screen. This
running activity is called foreground activity and at any given
time, there is only one such activity. Android Runtime (ART)
automatically manages application memory by using concur-
rent mark sweep (CMS) garbage collection algorithm that is
optimized for interactive applications. By default, Android

lMobile—speciﬁc platforms [15], [16] and mobile-specific models [17],
designed by companies such as Google and Facebook, can be a promising
approach towards efficient on-device inference for new mobile hardwares.

TABLE I: Hardware Specification of mobile device and cloud
server used in our evaluation.

Inference

Engine CPU GPU Mem. Storage Battery

2.26 GHz

Adreno 330 2300 mAh

Nexus 5 quad-core 2GB 16GB

(Krait 400) (129.8 GFLOPS) /8.74Wh

2.6 GHz NVIDIA
g2.2xlarge eight-core GRID K520 15GB 60GB N/A

(Intel Xeon E5-2670) (2448.4 GFLOPS)

TABLE II: Summary of image data sets. Each row describes the
image dimension in terms of width by height, and the image size
in KB.

Dimension(WxH)/

Dataset Size(KB)

1 2160 x 3840 785 1362 1396 1528 2599
2 1080 x 1920 251 479 547 739 576
3 540 x 960 82 146 165 196 226

OS allocates a heap size indicated by getMemoryClass ()
method. For memory-intensive apps, such as CNN based
mobile apps, we can request to run the app with large heap.
By doing so, Android OS might allocate a heap size indicated
by getLargeMemoryClass () method. For example, in
Nexus 5, we can increase the application heap from the
default 192 MB to 512 MB with large heap option turned on.
However, for memory constrained mobile devices, Android
OS might still allocate the default heap size to applications.
When an activity is in the background, it can be killed
by Android OS when memory is needed elsewhere, e.g. by
another running activity [21]]. Since a CNN model can be up
to hundreds of MBs, and therefore apps of on-device inference
architecture are more likely to be killed by OS in a memory-
constrained mobile device to free up memory. When users
need to interact with these killed apps, the app will have
to be completely restarted and restored to its previous state,
incurring undesirable startup latency.

III. MOBILE BENCHMARK IMPLEMENTATION

We implement an object recognition Android app that sup-
ports both cloud-based and on-device inference. As shown in
Figure 2] our Android app takes images as data input, invokes
one of the CNN models, generates a probability distribution
over labels, and displays the top five most probable labels to
the user.

In the cloud-based inference mode, image data needs to be
sent from our mobile app to an Apache web server hosted
inside the Amazon Virginia data center. To achieve this, our
mobile app specifies both the IP address of the cloud server
and the php script name when creating the HTTP connection.
After the HTTP connection is successfully established, our
mobile app will send the original or downscaled image of
224 by 224 pixels in dimension, to the web server. This
downsizing step is because all three deep learning models
we are using only require bitmaps of the scaled dimension.
After the image finishes uploading, the web server will then
invoke the specified Caffe model, use either CPU-only or GPU
accelerated Caffe framework for probability computation, and
return the top five labels to the mobile app.

In the on-device inference mode, both the selected CNN
model and the image bitmap object are loaded into mobile
device’s memory. Depending on which framework is selected,

our mobile app will use either CPU-only Caffe Library or
GPU-enabled CNNDroid to generate the probability distribu-
tion over labels.

IV. MOBILE DEEP INFERENCE EVALUATION
A. Experimental Setup

Our evaluation consists of empirical measurement of per-
forming inference tasks using both cloud-based and on-device
deep learning models, as illustrated in Figure 2} We use our
implemented mobile deep inference benchmark application,
described in Section to perform both inference modes.
For evaluating cloud-based setup, we first install Apache web
server on a cloud server, and then store three CNN models
in the web server. We select the cheapest GPU server, i.e.,
g2.2xlarge, from Amazon Virginia data center for both
the CPU and GPU cloud-based inference. All our cloud
servers run Ubuntu 14.04. For evaluating on-device inference,
we use a LG Nexus 5 (late 2013) mobile phone that runs
Android 6.0.1 Marshmallow and is on university campus Wi-
Fi. Hardware specifications can be found in Table

We selected three Caffe-based CNN models: AlexNet [5],
NIN [6], and SqueezeNet [/], as shown in Figure We choose
to evaluate our mobile application using these models because
they provide very similar top-5 error rate on ImageNet data
set, while differ vastly in terms of model sizes. All three
models only require images of dimension 224 by 224 pixels.
Our inference input data set contains three groups of a total
fifteen images, as summarized in Table |ll} Each group consists
of images of the same dimension. The second and third groups
are generated by resizing the original images in the first group
by scale factors of two and four respectively.

To measure the time taken to perform each step in an
inference task, we instrumented our Android app to output
event timestamps to a log file. We use Logcat, a command-
line tool, to pull log files of each experiment run from the
Nexus 5 through a laptop running within the same university
campus network over Wi-Fi. To prevent inaccurate power
measurement, we avoided connecting the Nexus 5 to laptop
through USB in our experiments. We also ensure the mo-
bile device is fully charged at 100% at the start of every
measurement session. Logcat logs contains system events,
including Android Runtime (ART) garbage collection logs,
and application-level logs.

To measure the power consumption and resource utilization
of our mobile app, we use the Trepn profiler [24] and save
the profile results in csv format for offline analysis. We follow
the best practices to reduce a profiler’s impact on measurement
inaccuracy by configuring Trepn to sample every 100 ms for
three data points of interests: battery consumption, normalized
CPU usage, and the GPU load.

For each experiment run, the user first launches the Trepn
profiler mobile app. Inside the profiler app, the user can select
to profile our developed object recognition app. This will
automatically launch our app, and present the UI for setting
up experiment configuration. The user can select either to run
the experiment in cloud or mobile modes, indicate the deep
learning models to use, and choose the dataset to perform the
object recognition on.

2Top-5 error rate is defined as the percentage of incorrectly labeled test
images in the top five most probable labels.

[i=1.2 (repeat twice) | i=3,4,5 ok
[oonv_i] [—
m o)+ = s [| o (o)

conv i cccp k cccp (k+1)
ve\u]

\]kn (1,0,1,0),(2,3,3,1) i,ikn=(4,973

. ‘»

conv_! 3

relu_6

a
| (Pool 2
)

el |

relu um relu u+2;

(b) NIN model.

(a) AlexNet model.

. fire_i/ o
i=2,3,4 expandixt i=56,7,8

fire_i/
expand1x1

fire_o/
expand1x1

fire_9/

F 3 ;
fire_i/ ! :
concat_J = poold |
L~ : :

: fire_i/ fire_i/ fire_i/ fire_i/ fire_o/ relu_expandixi
conv1 i squeeretxt |/ relu_expandixt squeezetxi |/ | relu_expandixt squeszett | L fire_o/
i c ‘ concat 110
relu_conv1 | ' fire_i/ fre i/ e/ N | fire i/ fres/ N drop9 poo
i | relu_squeezex1 expandax3 relu_squeeze1x1 expand3x3 relu_squeezeix1 fire_9/

fire_i/
relu_expand3x3

fire_i/
relu_expand3x3

fire_o/
relu_expand3x3

(c) SqueezeNet model.

Fig. 3: Neural Network architecture visualization. For each neural network, we show a simplified version based on a web tool [22].
These three convolution neural networks achieve very close top-5 ImageNet accuracy of around 80% [7], [23], but have vastly
different model sizes. AlexNet [5] is 233 MB, NIN [6] is 29 MB, and SqueezeNet [7] is 4.8 MB.

TABLE lll: Comparisons of cloud-based and on-device deep inference. Cloud-based models outperform on-device models by at
least six times. The model loading time dominates the object recognition task, and the time taken to compute the label probabilities
dominates the inference time for on-device mode. In addition, on-device mode consumes twice as much battery, therefore consumes

at least 12 times as much mobile energy.

Object Recognition Time Breakdown [ms] On-device Resource Consumption
Inference Mode Load Rescale Upload Compute
model bitmap bitmap probability CPU [%] GPU [%] battery [nW] ~ Mem[MB]
Cloud+CPU 0.00 76.16 36.83 238.60 6.22 0.39 1561.63 1279.10
Cloud+GPU 0.00 76.16 36.83 18.60 6.36 0.43 1560.17 1311.38
Device+Caffe 2422.13 79.98 0.00 8910.64 35.01 0.14 3249.01 1637.16
Device+CNNDroid | 61256.17 70.43 0.00 2131.70 22.20 27.14 2962.58 1752.45

B. End-to-end Comparisons

In this section, we present the measurement results of
object recognition time and mobile resource utilization for
both cloud-based and on-device inference.

1) Object Recognition Time: Table summarizes the
average end-to-end performance and resource consumption
of executing object recognition using both cloud-based and
on-device inference modes. The task of object recognition is
further broken down into four steps: loading CNN models
into memory, downscaling image input to desired dimension,
uploading input data to the cloud server, and computing the
probability matrix. For each inference mode, we repeat the
recognition tasks using all fifteen images and three CNN
models. We measure the time to execute each step and
calculate the average. We use CPU-only Caffe framework and
GPU accelerated Caffe framework for toggling the CPU and
GPU mode in our g2.2xlarge server. Note, the time to
load models is negligible in the cloud-based scenario because
models already reside inside the memory and can be used to
execute the inference task immediately. Similarly, on-device
mode does not incur any time for uploading image bitmaps.
Recall, the inference time is the sum of rescaling, uploading
bitmap and computing probability over one bitmap, and the
recognition time is the sum of amortized model loading time
over a batch of images and inference time. The average cloud-
based inference time is 351.59 ms/131.59 ms when using
CPU-only/GPU of a well-provisioned cloud instance hosted
in a nearby data center. As shown, because inference tasks
are typically data-parallel and therefore can be accelerated by
up to 10x when using GPU. However, we should note that
such results represent a lower bound performance of real-
world setting. In a real-world deployment scenario, object
recognition time can last much longer due to reasons such

as overloaded cloud servers and variable mobile network
conditions. The total inference time when running on-device
is almost 9 seconds when using Caffe-based model, and 2.2
seconds when using CNNDroid model.

2) Energy and Resource Consumption: Table shows
the resource consumption of mobile device when running the
object recognition mobile application. As a baseline, we mea-
sure the performance when the device is idle and the screen
is turned on. The CPU utilization and power consumption
is 3.17% and 1081.24 mW respectively. Cloud-based mode
consumes roughly the same amount of CPU and 44.4% more
power consumption comparing to the baseline. However, on-
device mode not only incurs significantly higher CPU utiliza-
tion (and in the case of CNNDroid, GPU utilization as well),
but also require two times more power consumption when
compared to the baseline. In all, we can calculate the energy
consumption of different inference modes by multiplying the
average inference (recognition) time by the average power
consumption. Cloud-based inference requires as low as 0.057
mWh energy when using faster GPU computation, and on-
device based inference consumes up to 8.11 mWh.

Result: Cloud-based inference exhibits substantial benefits
in terms of inference response time and mobile energy savings
over on-device inference, in this case by two orders of mag-
nitude. This is due to more powerful processing power and
shorter durations of inference.

C. On-device Deep Inference Performance Analysis

In this section, we analyze the performance differences
by dissecting the on-device object recognition task with an
in-depth study of time breakdown, and resource utilization.
We focus on understanding the performance of on-device

5 16000

— -A pg;;zcl_hlb 2 14000 B Caffe+NIN
[CNNDroid ; Il Caffe+SqueezeNet
‘@ 10A E 12000 [0 CNNDroid+AlexNet
% .; 10000 1 CNNDroid+NIN
5 2
= 10 T 8000
2 3
s £ 6000
g 5
3 10° % 4000
3
s 2000
10" 0
AlexNet NIN SqueezeNet
Model Type

(a) Model loading time.

TABLE IV: Summary of GC activities when using CNNDroid-
based device inference. ART uses the default CMS GC, and the
GC time takes up to 9.89% during model loading, and up to 25%
during user interactions. The average GC pause time can be up
10 39.23 ms.

On-device Ph Duration[ms] Num. GC GC
Inference ase urationimsl ™ of GC Time [ms] _ Pause [ms]
CNNDroid+AlexNet Load 84537.33 4.33 513.55 10.42
CNNDroid+NIN Model 37975 16.67 3757.30 175.76
CNNDroid+AlexNet User 11800 4 536.55 4.60
CNNDroid+NIN | Interaction 17166.67 7 4307.18 274.66

NN oW
S a &
38 3 &

=]
3

Bitmap Scaling Time (ms)
g 88

o

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15
Image (Sorted by Scaled Size)

Fig. 5: Bitmap downscaling time. The time taken to downscale
the image in the mobile device grow with the image size.
Specially, larger images also experiences proportionally longer
scaling time because of the limited memory resources assigned
to the mobile application.

deep inference and the implications for potential peformance
improvement.

1) Impact of Deep Learning Models: The choice of deep
learning models including the framework and CNN model
design can have a significant impact on the performance,
due to different model sizes and complexities. We quantify
such impacts with both the model loading and probability
computation time. We plot the loading time in Figure @(a)]
in log scale. For loading the same model (AlexNet and NIN),
the ported Caffe library takes up to 4.12 seconds, about 22X
faster than using CNNDroid. Furthermore, it only takes an
average of 103.7 ms to load the smallest SqueezeNet mode1E|
This loading happens whenever users first launch the mobile
application, and potentially when a suspended background
app is brought back. Our measurement of CNNDroid’s long
loading time suggests that users need to wait for up to 88
seconds to be able to interact with the mobile app. Although
long loading time can be amortized by the number of inference

3We did not have results for running SqueezeNet using CNNDroid library
because CNNDroid library currently does not support newer deep neural
networks that include expand convolution layers, such as SqueezeNet.

Hl Caffe+AlexNet

[mage (Sorted by Original S|ze

(b) Model computation time.

16000
Il Caffe+AlexNet

E Caffe+NIN

B Caffe+SqueezeNet
[0 CNNDroid+AlexNet
1 CNNDroid+NIN

L

[mage (Sorted by Original S|ze

14000

12000
10000
8000
6000

4000

Total Inference Time (ms)

2000

|

L

Fig. 4: On-device Inference Time. We compare two approaches for device-based inference using three CNN models. When using
CNNDroid-based approach, trained models need to be converted to supported format.

l

0

(c) Total inference time.

tasks during one user interaction session, it still negatively
impact user experiences.

Next, we show the time taken to compute the input image
using five different configurations in Figure f(b)] For each
configuration, we measure the computation time taken for all
five images and collect a total of 75 data points. Each bar rep-
resents the average computation time across three versions of
the same image and the standard deviation. CNNDroid-based
AlexNet inference achieves the lowest average of 1541.67
ms, compared to the longest time of 13745.33 ms using
ported Caffe NIN model. Even with the fastest device-based
inference, it still takes three times more than CPU-based cloud
inference. In addition, we plot the end-to-end inference time
in Figure This total inference time includes the bitmap
scaling time, the GC time, and the model computation time.
CNNDroid-based approach takes an average of 1648.67 ms
for performing object recognition on a single image, about
seven times faster than using ported Caffe models. Based
on the response time rules [25], [26], it might lead to poor
user experiences when using certain device-based inference
approach.

2) Impact of Limited Mobile Memory: During loading
CNNDroid-based models, we observe much more frequent,
and long lasting garbage collecting activities performed by
Android Runtime in our mobile device. When running our app
using CNNDroid library, we have to request for a large heap
of 512 MB memoryﬂ Even with a large heap, the memory
pressure of creating new objects has lead to a total of 8.33
(23.67) GC invocations when using CNNDroid-based AlexNet
(NIN) model, as indicated in Table[[V] Our evaluation suggests
that by allocating more memory to deep learning powered
mobile apps, or running such apps in more powerful mobile
devices can mitigate the impact of garbage collection.

3) Impact of Image Size: Because the CNN models only
require images of dimension 224 by 224 pixels to perform
inference tasks, we can scale input image to the required
dimension before sending. Figure [5] shows the time taken
to scale images with different sizes. Each data point repre-
sents the average scaling time across five different runs. The
time taken to resize image grows as its size increases. It is
only beneficial to downscale an image of size x; to xo if
Ty(z1,x2) + Tn(za) < Tp(z1), where Ty(x,y) represents

4Running the app with the default 192 MB memory will lead to
OutOfMemoryError.

— AlexNet =100 — AlexNet

Battery Power [mW]
SNwsae N
3888883
g8g8gggsgs
8888888

Normalized CPU Load [%]

N s 2 =
83538

o 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Time [Second] Time [Second]

(a) Caffe-based energy. (b) Caffe-based CPU.

= 100 —cpu

— GPU
0

0 20 40 60 80 100 [20 40 60 80 100
Time [Second] Time [Second]

7000 — CNNDroid+AlexNet

Battery Power [mW]
anwaas
388588
88888sg

-888888

Normalized Load [%]

Naaw
3888

(c) CNNDroid-based energy. (d) CNNDroid-based resource.

Fig. 6: Energy consumption and resource utilization of on-
device object recognition task.

the time to downscale an image from size z to y and T),(z)
denotes the time to upload an image of size x to a cloud
server. For example, based on our measurement, it takes an
average of 36.83 ms to upload an image of 172 KB to our
cloud server. Also, from Figure [5] we know that it takes up
to 38 ms to resize an image less than 226 KB. By combining
these two observations, it is easy to conclude that directly
uploading image one to five is more time efficient. We can
expect to make informed decisions about whether resizing an
image of size x before uploading is beneficial or not given
enough time measurements of resizing and uploading steps.

Result: Our analysis shows that on-device inference’s per-
formance bottlenecks mainly exhibit in loading model and
computing probability steps.

D. On-device Deep Inference Resource and Energy Analysis

In Figure [f] we analyze both the energy consumption
and resource utilization when running our app in different
configurations . We compare the time-series plots of running
AlexNet model using Caffe Android library and CNNDroid
framework. The plots correspond to experiment runs that
perform inference tasks on image set one.

For Caffe Android library based approach, we observe an
initial energy consumption (and CPU utilization) that increases
corresponding to loading AlexNet CNN model into the mem-
ory, a continuation of energy spike during model computation,
and the last phase that corresponds to displaying images and
the most probable label texts, in Figure |6(a)| and Figure |6(b)
The other two CNN models, NIN and SqueezeNet, exhibit
very similar usage pattenﬂ Specifically, in the case of NIN,
the initial model loading causes the energy consumption to
increase from baseline 1081.24 mW to up to 5000 mW; when
performing the model computation, both the energy consump-
tion and CPU utilization spikes to more than 7000 mW and
66.2%. Note in the case of SqueezeNet, we only observe a
very small window of both energy and CPU spikes at the
very beginning of measurement. This is because SqueezeNet
can be loaded in 109 ms, compared to more than 3000 ms to
load either AlexNet or NIN.

In contrast, we observe two key usage differences in CN-
NDroid approach, as shown in Figure and Figure [6(d)]

SInterested readers can refer to our arXiv version [27]] for additional results
of Caffe-based NIN and SqueezeNet models, and CNNDroid-based NIN.

First, CNNDroid-based AlexNet exhibits a longer period of
more stable and lower energy consumption compared to its
counterpart in Caffe-based approach. This is mainly because
CNNDroid explicitly expresses some of the data-parallel work-
load using RenderScript and is able to offload these work-
load to more energy-efficient mobile GPU [28] (indicated by
the high GPU utilization during model loading). Second, the
total model computation time is significantly shortened from
40 seconds to around five seconds. In all, by shifting some
of computation tasks during model loading, CNNDroid-based
approach successfully reduces the user perceived response
time. However, the CNNDroid approach consumes 85.2 mWh
energy, over 42% more than Caffe-based approach. Note 91%
of CNNDroid energy is consumed during model loading phase,
and therefore can be amortized by performing inference tasks
in batch.

Result: The CNNDroid-based approach is more energy-
efficient in performing inference tasks compared to the Caffe-
based approach when models are preloaded into the mobile
memory.

V. RELATED WORK

To better understand the performance and power characteris-
tics of modern mobile applications, researchers have developed
a number of performance monitor tools, such as 3GTest [29],
4GTest [30], Applnsight [31], eprof [32], and Trepn [24]
over the past decade. Our paper focuses on understanding the
performance bottlenecks of a new class of mobile applications
that are powered by deep learning models, with an imple-
mented object recognition benchmark Android app.

In order to improve response time and preserve batter energy
in resource-constrained devices, researchers have proposed to
offload computation intensive tasks to the cloud [33], [34],
[35], [36]. Our paper confirms that cloud-based inference
mobile apps still deliver better response time and consume
less power compared to mobile-based counterparts. However,
recent development of mobile specific deep learning optimiza-
tions [37], [38], [31, [L7], [15[], [16] and improvement in
mobile GPU energy consumption [28] are promising improve-
ments towards efficient mobile-based deep learning apps. Our
work can be easily extended to evaluate the efficiency of these
new models and hardware.

VI. CONCLUSION

In this paper, we evaluate the current approaches to perform
deep inference tasks in resource-constrained mobile devices.
Our analysis show that while cloud-based inference incurs
reasonable response time and energy consumption, current on-
device inference is only feasible for very limited scenarios.
However, with both industry and research efforts on adapting
deep neural networks to the mobile devices, we believe it is
very likely that on-device inference can be done efficiently in
the near future. Consequently, when developing deep learning
powered mobile apps, developers will have the freedom to
choose from cloud-based, device-based or even a hybrid
approach.

Acknowledgements. We thank all the reviewers for their
insightful comments and Sam Ogden for proofreading, which
improved the quality of this paper.

[1]
[2]

[3]

[4]
[5]

[6]
[7]

[8]

[10]

[11]

(12]

[13]
[14]
[15]
[16]

(17]

(18]
[19]
[20]
[21]

[22]

[23]
[24]
[25]
[26]
[27]

REFERENCES

G. C. Platform, “Cloud vision api,” Accessed on 2017.

clarifai, “IMAGE AND VIDEO RECOGNITION API” Accessed on
2017.

S. S. Latifi Oskouei, H. Golestani, M. Hashemi, and S. Ghiasi, “Cn-
ndroid: Gpu-accelerated execution of trained deep convolutional neural
networks on android,” in Proceedings of the 2016 ACM on Multimedia
Conference, ser. MM 16, 2016, pp. 1201-1205.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1097-1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification- with-deep-convolutional-neural-networks.
pdf

S. Y. M. Lin, Q. Chen, “Network in network,” International Conference
on Learning Representations, 2014 (arXiv:1312.4400v3), 2014.

F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” arXiv:1602.07360, 2016.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Intelligent Signal Processing.
IEEE Press, 2001, pp. 306-351.

S. CS231n, “Convolutional neural networks for visual recognition.” http:
/lcs231n.github.io/convolutional-networks/, 2017.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22Nd ACM
International Conference on Multimedia, ser. MM ’14. New
York, NY, USA: ACM, 2014, pp. 675-678. [Online]. Available:
http://doi.acm.org/10.1145/2647868.2654889

R. Collobert, S. Bengio, and J. Mariéthoz, “Torch: a modular machine
learning software library,” Idiap, Tech. Rep., 2002.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative
study of deep learning software frameworks,” arXiv:1511.06435, 2015.
B. Caffe, “Model zoo,” https://github.com/BVLC/caffe/wiki/Model-Zoo,
Accessed on 2017.

TensorFlow, “Introduction to tensorflow lite,” https://www.tensorflow.
org/mobile/tflite/, Accessed on 2018.

Y. Jia and P. Vajda, “Delivering real-time ai in the palm of your
hand,” https://code.facebook.com/posts/196146247499076/delivering-
real-time-ai-in-the-palm-of-your-hand/, Nov. 8, 2016.

M. Z. Andrew G. Howard, “Mobilenets: Open-source models for
efficient on-device vision,” https://research.googleblog.com/2017/06/
mobilenets-open-source-models-for.html, June 14, 2017.

soumith, “Torch-7 for android,” |https://github.com/soumith/
torch-android, Accessed on 2017.

sh1r0, “Caffe android lib,” https://github.com/sh1r0/catfe-android-lib,
Accessed on 2017.

G. A. Developer, “Renderscript api guides,” https://developer.android.
com/guide/topics/renderscript/compute.html, Accessed on 2017.
Google Android Developer, “Activity,” https://developer.android.com/
reference/android/app/Activity.htm, Accessed on 2017.

NetScope, “A web-based tool for visualizing neural network archi-
tectures,” http://ethereon.github.io/netscope/quickstart.html, Accessed on
2017.

BVLC Caffe, “Models accuracy on imagenet 2012 val,” https://github.
com/BVLC/caffe/wiki/Models-accuracy-on-ImageNet-2012-val, 2015.
Q. T. Inc., “Trepn power profiler,” https://developer.qualcomm.com/
software/trepn-power-profiler, Accessed on 2017.

J. NielSen., “Website response times.” https://www.nngroup.com/|
articles/website-response-times/, June 21, 2010.

appdynamics, “16 metrics to ensure mobile app success,” Accessed on
2017.

T. Guo, “Towards efficient deep inference for mobile applications,”
arXiv:1707.04610, 2017.

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

371

[38]

nvidia, “Gpus are driving energy efficiency across the computing in-
dustry, from phones to super computers.” http://www.nvidia.com/object/
gcr-energy-efficiency.html, Accessed on 2017.

J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl,
“Anatomizing application performance differences on smartphones,”
in Proceedings of the S8th International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’10. New
York, NY, USA: ACM, 2010, pp. 165-178. [Online]. Available:
http://doi.acm.org/10.1145/1814433.1814452

J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics of 4g
Ite networks,” in Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’12.
New York, NY, USA: ACM, 2012, pp. 225-238. [Online]. Available:
http://doi.acm.org/10.1145/2307636.2307658

L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh, “Appinsight: Mobile app performance monitoring in the
wild.”

A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,” in
Proceedings of the 7th ACM european conference on Computer Systems.
ACM, 2012, pp. 29-42.

B.-G. Chun, S. IThm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of
the sixth conference on Computer systems. ACM, 2011, pp. 301-314.
E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49-62.
P. Angin, B. Bhargava, and R. Ranchal, “Tamper-resistant au-
tonomous agents-based mobile-cloud computing,” in NOMS 2016 - 2016
IEEE/IFIP Network Operations and Management Symposium, April
2016, pp. 843-847.

T. Guo, P. Shenoy, K. K. Ramakrishnan, and V. Gopalakrishnan,
“Latency-aware virtual desktops optimization in distributed clouds,”
Multimedia Systems, Mar 2017. [Online]. Available: https://doi.org/10.
1007/s00530-017-0536-y

N. D. Lane, S. Bhattacharya, and P. Georgiev, “Deepx: A software accel-
erator for low-power deep learning inference on mobile devices,” in 2016
15th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), 2016, pp. 1-12.

L. N. Huynh, R. K. Balan, and Y. Lee, “Deepsense: A gpu-
based deep convolutional neural network framework on commodity
mobile devices,” in Proceedings of the 2016 Workshop on Wearable
Systems and Applications, ser. WearSys 16. New York, NY, USA:
ACM, 2016, pp. 25-30. [Online]. Available: http://doi.acm.org/10.1145/
2935643.2935650:

http://www.deeplearningbook.org
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://doi.acm.org/10.1145/2647868.2654889
http://tensorflow.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://www.tensorflow.org/mobile/tflite/
https://www.tensorflow.org/mobile/tflite/
https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
https://github.com/soumith/torch-android
https://github.com/soumith/torch-android
https://github.com/sh1r0/caffe-android-lib
https://developer.android.com/guide/topics/renderscript/compute.html
https://developer.android.com/guide/topics/renderscript/compute.html
https://developer.android.com/reference/android/app/Activity.htm
https://developer.android.com/reference/android/app/Activity.htm
http://ethereon.github.io/netscope/quickstart.html
https://github.com/BVLC/caffe/wiki/Models-accuracy-on-ImageNet-2012-val
https://github.com/BVLC/caffe/wiki/Models-accuracy-on-ImageNet-2012-val
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://www.nngroup.com/articles/website-response-times/
https://www.nngroup.com/articles/website-response-times/
http://www.nvidia.com/object/gcr-energy-efficiency.html
http://www.nvidia.com/object/gcr-energy-efficiency.html
http://doi.acm.org/10.1145/1814433.1814452
http://doi.acm.org/10.1145/2307636.2307658
https://doi.org/10.1007/s00530-017-0536-y
https://doi.org/10.1007/s00530-017-0536-y
http://doi.acm.org/10.1145/2935643.2935650
http://doi.acm.org/10.1145/2935643.2935650

	Introduction
	Background
	Deep Learning Models
	Mobile Apps
	Cloud-based vs. on-device Inference
	Lifecycle Management and Its Performance Implication

	Mobile Benchmark implementation
	Mobile Deep Inference Evaluation
	Experimental Setup
	End-to-end Comparisons
	Object Recognition Time
	Energy and Resource Consumption

	On-device Deep Inference Performance Analysis
	Impact of Deep Learning Models
	Impact of Limited Mobile Memory
	Impact of Image Size

	On-device Deep Inference Resource and Energy Analysis

	Related Work
	Conclusion
	References

